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Abstract. This paper presents new efficient solutions to the rolling
shutter camera absolute pose problem. Unlike the state-of-the-art poly-
nomial solvers, we approach the problem using simple and fast linear
solvers in an iterative scheme. We present several solutions based on fix-
ing different sets of variables and investigate the performance of them
thoroughly. We design a new alternation strategy that estimates all
parameters in each iteration linearly by fixing just the non-linear terms.
Our best 6-point solver, based on the new alternation technique, shows
an identical or even better performance than the state-of-the-art R6P
solver and is two orders of magnitude faster. In addition, a linear non-
iterative solver is presented that requires a non-minimal number of 9
correspondences but provides even better results than the state-of-the-
art R6P. Moreover, all proposed linear solvers provide a single solution
while the state-of-the-art R6P provides up to 20 solutions which have to
be pruned by expensive verification.
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1 Introduction

Rolling shutter (RS) cameras are omnipresent. They can be found in smart-
phones, consumer, professional, and action cameras and even in self-driving
cars. RS cameras are cheaper, and easier to produce, than global shutter cam-
eras. They also posses other advantages over the global shutter cameras, such as
higher achievable frame-rate or longer exposure times.
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There is, however, a significant drawback when using them for computer
vision applications. When the scene or the camera is moving during image cap-
ture, images produced by RS cameras will become distorted. The amount and
type of distortion depends on the type and speed of camera motion and on the
depth of the scene. It has been shown that RS image distortions can cause prob-
lems for standard computer vision methods such as Structure from Motion [1],
visual SLAM [2] or multi-view dense stereo [3]. Therefore, having a special cam-
era model for rolling shutter cameras is desirable.

The camera absolute pose computation is a fundamental problem in many
computer vision tasks such as Structure from Motion, augmented reality, visual
SLAM, and visual localization. The problem is to compute the camera pose from
3D points in the world and their 2D projections into an image. The minimal
number of correspondences necessary to solve the absolute pose problem for a
perspective calibrated camera is three. The first solution to this problem was
introduced by Grunert [4] and since then it was many times revisited [5–7].
Other work has focused on computing the absolute pose from a larger than the
minimal number of correspondences [8–12]. All of the previous work consider a
perspective camera model, which is not suitable for dynamic RS cameras.

Recently, as RS cameras became more and more common, the focus turned to
computing camera absolute pose from images containing RS effects. First, several
RS camera motion models were introduced in [13]. A solution to RS absolute
pose using non-minimal (eight and half) number of points was presented in [14].
It relied on a non-linear optimization and required a planar scene.

In [15], video sequences were exploited and the absolute camera pose was
computed sequentially using a non-linear optimization starting from the previous
camera pose. Another approach using video sequences was used for visual SLAM
in [2] where the camera motion estimated from previous frames was used to
compensate the RS distortion in the next frame prior to the optimization.

A polynomial solution that is globally optimal was presented in [16]. It uses
Gloptipoly [17] solver to find a solution from 7 or more points. Authors show
that the method provides better results than [14], but the runtime is in the order
of seconds, making it impractical for typical applications such as RANSAC.

The first minimal solution to the rolling shutter camera absolute pose prob-
lem was presented in [18]. It uses the minimal number of six 2D to 3D point
correspondences and the Gröbner basis method to generate an efficient solver.
The proposed R6P is based on the constant linear and angular velocity model
as in [1,14,16] but it uses the first order approximation to both the camera ori-
entation and angular velocity, and, therefore, it requires an initialization of the
camera orientation, e.g., from P3P [7]. Paper [18] has shown that R6P solver sig-
nificantly outperforms perspective P3P solver in terms of camera pose precision
and the number of inliers captured in the RANSAC loop.

1.1 Motivation

It has been demonstrated in the literature that RS camera absolute pose is
beneficial and often necessary when dealing with RS images from moving camera
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or dynamic scene. Still, until now, all the presented solutions have significant
drawbacks that make them impractical for general use.

The state-of-the-art solutions require a non-minimal or a larger number of
points [14,16], planar scene [14], video sequences [1,2,15], are very slow [16] and
provide too many solutions [18].

If one requires a practical algorithm similar to P3P, but working on RS
images, the closest method available is R6P [18]. However, R6P still needs around
1.7 ms to compute the camera pose, compared to around 3µs for P3P. Therefore,
in typical applications where P3P is used, one would suffer a several orders of
magnitude slowdown compared to P3P. This makes it hard to use for real-time
applications such as augmented reality. In addition, R6P provides up to 20 real
solutions, which need to be verified. This makes tasks like RANSAC, which uses
hundreds or thousands of iterations and verifies all solutions, extremely slow
compared to P3P. This motivates us to create a solution to RS absolute pose
problem with similar performance to R6P [18] and runtime comparable to P3P.

1.2 Contribution

In this work we present solutions that remove previously mentioned drawbacks
of the state-of-the-art methods and provide practical and fast rolling shutter
camera absolute pose solvers. We take a different approach to formulating the
problem and propose linear solutions to rolling shutter camera absolute pose.
Specifically, we present the following RS absolute camera pose solvers:

– a 6-point linear iterative solver, which provides identical or even better solu-
tions than R6P in 10µs, which is up to 170× faster than R6P. This solver is
based on a new alternating method;

– two 6-point linear iterative solvers that outperform R6P for purely transla-
tional motion;

– a 9-point linear non-iterative solver that provides more accurate camera pose
estimates than R6P in 20µs;

All solvers are easy to implement and they return a single solution. We for-
mulate the problem of RS camera absolute pose in Sect. 2. Derivations of all new
solvers are in Sect. 3. Section 4 contains experiments verifying the feasibility of
the proposed solvers and it compares them against P3P and R6P [18].

2 Problem Formulation

For calibrated perspective cameras, the projection equation can be written as

λixi = RXi + C, (1)

where R and C are the rotation and translation bringing a 3D point Xi from a
world coordinate system to the camera coordinate system with xi = [ri, ci, 1]�,
and scalar λi ∈ R. For RS cameras, every image row is captured at different
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time and hence at a different position when the camera is moving during the
image capture. Camera rotation R and translation C are therefore functions of
the image row ri being captured

λixi = λi

⎡
⎣
ri
ci
1

⎤
⎦ = R(ri)Xi + C(ri). (2)

In recent work [1,3,13,14,16,18], it was shown that for the short time-span
of a frame capture, the camera translation C(ri) can be approximated with a
simple constant velocity model as

C(ri) = C + (ri − r0)t, (3)

where C is the camera center corresponding to the perspective case, i.e. when
ri = r0, and t is the translational velocity.

The camera rotation R(ri) can be decomposed into two rotations to represent
the camera initial orientation by Rv and the change of orientation during frame
capture by Rw(ri − r0).

In [16,18], it was observed that it is usually sufficient to linearize Rw(ri − r0)
around the initial rotation Rv using the first order Taylor expansion such that

λi

⎡
⎣
ri
ci
1

⎤
⎦ = (I + (ri − r0)[w]×) RvXi + C + (ri − r0)t, (4)

where [w]× is a skew-symmetric matrix of vector w. The model (4), with lin-
earized rolling shutter rotation, will deviate from the reality with increasing
rolling shutter effect. Still, it is usually sufficient for most of the rolling shutter
effects present in real situations.

In [18], a linear approximation to the camera orientation Rv was used to solve
the rolling shutter absolute pose problem from a minimal number of six 2D-3D
point correspondences. This model has the form

λi

⎡
⎣
ri
ci
1

⎤
⎦ = (I + (ri − r0)[w]×) (I + [v]×) Xi + C + (ri − r0)t. (5)

The drawback of the model (5) is that Rv is often not small and thus cannot
be linearized. Therefore, the accuracy of the model is dependent on the initial
orientation of the camera in the world frame. In [18], it was shown that the
standard P3P algorithm [7] is able to estimate camera orientation with sufficient
precision even for high camera rotation velocity and therefore P3P can be used
to bring the camera rotation matrix Rv close to the identity, where (5) works
reasonably.

The model (5) leads to a system of six quadratic equations in six unknowns.
This system has 20 solutions and it was solved in [18] using the Gröbner basis
method [19,20]. The Gröbner basis solver [18] for the R6P rolling shutter problem
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requires the G-J elimination of a 196×216 matrix and computing the eigenvectors
of a 20 × 20 matrix. The R6P solver runs for about 1.7 ms and thus is too slow
in many practical situations.

We will next show how to simplify this model by linearizing Eq. (5) and yet
still obtaining a similar performance as the Gröbner basis R6P absolute pose
solver [18] for the original model (5).

3 Linear Rolling Shutter Solvers

We present here several linear iterative solvers to the minimal absolute pose
rolling shutter problem. All these solvers start with the model (5) and they use six
2D-3D image point correspondences to estimate 12 unknowns v, C, w, and t. The
proposed solvers differ in the way how the system (5) is linearized. Additionally
we propose a linear non-iterative 9 point absolute pose rolling shutter solver.

3.1 R6Pw,t
v,C Solver

The R6Pw,t
v,C solver is based on the idea of alternating between two linear solvers.

The first R6Pv,C solver fixes the rolling shutter parameters w and t in (5) and
estimates only the camera parameters v and C. The second R6Pw,t solver fixes
the camera parameters v and C and estimates only the rolling shutter parameters
w and t. Both these partial solvers results in 12 linear equations in 6 unknowns
that can be solved in the least square sense. The motivation for this solver comes
from the fact that even for larger rolling shutter speed, the camera parameters
v and C can be estimated quite accurately.

The R6Pw,t
v,C solver starts with w0 = 0 and t0 = 0 and, in the first iteration,

uses linear R6Pv,C solver to estimate v1 and C1. Using the estimated v1 and C1,
the linear solver R6Pw,t estimates w1 and t1. This process is repeated until the
desired precision is obtained or a maximum number of iterations is reached.

The R6Pw,t
v,C solver does not perform very well in our experiments, which we

account to the fact that it never estimates the pose parameters v,C and the
motion parameters w,t together in one step. Nevertheless, we present this solver
as a logical first step when considering the iterative approach to RS absolute
pose problem.

3.2 R6Pw
v,C,t and R6Pw,t

v,C,t Solver

To avoid problems of the R6Pw,t
v,C solver, we introduce the R6Pw

v,C,t solver. The
R6Pw

v,C,t solver alternates between two solvers, i.e. the linear R6Pv,C,t solver,
which fixes only the rolling shutter rotation w and estimates v, C and t, and the
R6Pw solver that estimates only the rolling shutter rotation w using the fixed
v, C and t. The R6Pv,C,t solver solves 12 linear equations in 9 unknowns and the
R6Pw solver solves 12 linear equations in 3 unknowns in the least square sense.
Since the first R6Pv,C,t solver assumes unknown rolling shutter translation, the
camera parameters are estimated with better precision than in the case of the
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R6Pv,C solver. Moreover, in many applications, e.g. cameras on a car, cameras
often undergo only a translation motion, and therefore w is negligible. In such
situations, the first iteration of the R6Pv,C,t solver already provides very precise
estimates of the camera parameters.

Another approach is to use only the v and C estimated by R6Pv,C,t solver and
in the second step re-estimate the rolling shutter translation t together with the
rolling shutter rotation w using the linear R6Pw,t solver. The solver based on this
strategy will be referred to as R6Pw,t

v,C,t.
The resulting solvers R6Pw

v,C,t and R6Pw,t
v,C,t, again, alternate between the two

linear solvers until the desired precision is obtained or a maximum number of
iterations is reached. We show in the experiments that those solvers outperform
R6P in the case of pure translational motion.

3.3 R6P[v]×
v,C,w,t Solver

The R6P[v]×
v,C,w,t solver estimates all unknown parameters v, C, w and t together in

one step. To avoid non-linearity in (5), the solver fixes [v]× that appears in the
nonlinear term [w]×[v]× in (5). Thus the solver solves equations

λi

⎡
⎣
ri
ci
1

⎤
⎦ = (I + (ri − r0)[w]×) Xi+[v]×Xi+(ri−r0)[w]×[v̂]×Xi+C+(ri−r0)t, (6)

where v̂ is a fixed vector.
In the first iteration v̂, is set to the zero vector and the term (ri−r0)[w]×[v̂]×Xi

in (6) disappears. This is usually a sufficient approximation. The explanation
for this is as follows. After the initialization with P3P the camera rotation is
already close to the identity and in real applications the rolling shutter rotation
w during the capture is usually small. Therefore, the nonlinear term [w]×[v]× is
small, sometimes even negligible, and thus it can be considered to be zero in the
first iteration.

In the remaining iterations we fix v̂ in the (ri − r0)[w]×[v̂]×Xi term to be
equal to the vi estimated in the previous iteration of the R6P[v]×

v,C,w,t solver. Note
that we fix only v that appears in the nonlinear term [w]×[v]× and there is still
another term with v in (6) from which a new v can be estimated. Therefore,
all parameters are estimated at each step which is a novel alternating strategy.
To our knowledge, all existing algorithms that are based on the alternating
optimization approach completely fix a subset of the variables, meaning that
they cannot estimate all the variables in one step.

The R6P[v]×
v,C,w,t in each iteration solves only one system of 12 linear equations

in 12 unknowns and is therefore very efficient. In experiments we will show that
the R6P[v]×

v,C,w,t provides very precise estimates already after 1 iteration and after
5 iterations it has virtually the same performance as the state-of-the-art R6P
solver [18].
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3.4 R9P

Our final solver is a non-iterative solver that uses a non-minimal number of
nine 2D-3D point correspondences. We note that the projection Eq. (6) can be
rewritten as

λi

⎡
⎣
ri
ci
1

⎤
⎦ = (I + [v]×) Xi + C + (ri − r0)([w]×(I + [v̂]×)Xi + t). (7)

We can substitute the term [w]×(I+[v̂]×) in (7) with a 3×3 unknown matrix RRS.
After eliminating the scalar values λi by multiplying Eq. (7) from the left by the
skew symmetric matrix for vector

[
ri ci 1

]� and without considering the internal
structure of the matrix RRS, we obtain three linear equations in 18 unknowns,
i.e. v, C, t, and 9 unknowns in RRS. Since only two from these tree equations are
linearly independent we need nine 2D-3D point correspondences to solve this
problem.

Note that the original formulation (5) was an approximation to the real
rolling shutter camera model and therefore the formulation with a general 3 × 3
matrix RRS is yet a different approximation to this model.

4 Experiments

We tested the proposed solvers on a variety of synthetic and real datasets and
compared the results with the original R6P solver [18] as well as P3P. We fol-
lowed the general pattern of experiments used in [18] in order to provide consis-
tent comparison on the additional factor of experiments that are specific to our
iterative solvers such as their convergence.

To analyze the accuracy of the estimated camera poses and velocities, we used
synthetic data in the following setup. A random set of 3D points was generated
in a cubic region with x, y, z ∈ [−1; 1] and a camera with a distance d ∈ [2; 3]
from the origin and pointing towards the 3D points. The camera was set to
be calibrated, i.e. K = I and the field of view was set to 45◦. Rolling shutter
projections were created using a constant linear velocity and a constant angular
velocity with various magnitudes.

Using the constant angular velocity model for generating the data ensures
that our data is not generated with the same model as the one that is estimated
by the solvers (linear approximation to a rotation). Although the used model
is just an approximation of the real rolling shutter model and we could have
chosen another one, e.g. constant angular acceleration, we consider the constant
angular velocity model as a reasonable description of the camera motion during
the short time period of frame capture.

We used 6 points for the original R6P and all proposed R6P iterative solvers.
In order to provide P3P with the same data, we used all possible triplets from
the 6 points used by R6P and then chose the best result. For R9P we used 9
points. Unless stated otherwise, all iterative solvers were run for maximum 5
iterations in the experiments.
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Fig. 1. Experiment on synthetic data focusing on the precision of estimated camera

poses and velocities. Notice that the performance of R6P
[v]×
v,C,w,t is identical to R6P. In

terms of camera pose these two solvers are slightly outperformed by R9P. Other linear
solvers perform very poorly in all respects.

4.1 Synthetic Data

In the first experiment, we gradually increased the camera velocities during cap-
ture. The maximum translational velocity was 0.3 per frame and the maximum
angular velocity was 30◦ per frame. Figure 1 shows the results, from which we
can see how the increasing RS deformation affects the estimated camera pose
and also estimated camera velocities in those solvers.

Rotational and Translational Motion: In agreement with [18], R6P provides
much better results than P3P thanks to the RS camera model. The newly pro-
posed solver R6P[v]×

v,C,w,t provides almost identical results to R6P at much lower
computation cost (cf. Table 1). The best estimates of the camera pose are pro-
vided by R9P at the cost of using more than minimal number of points. The
other 6-point iterative solutions are performing really bad, often providing worse
results than P3P. In the next experiment we tested the sensitivity of the pro-
posed solvers to increasing levels of image noise. Figure 2 right shows that the
new solvers have approximately the same noise sensitivity as R6P [18].
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Fig. 2. (Left) Purely translational camera motion, increasing on the x axis. Image noise
with σ 1pix. Notice that R6Pw

v,C,t and R6Pw,t
v,C,t now outperform all the others. (Right)

Performance on general camera motion with increasing image noise.
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Fig. 3. Testing the convergence of the iterative solvers. All iterative solvers have been
run with 1, 5 and 50 iterations on data with R = I and increasing RS effect (left).
Convergence of the algebraic error using the three viable iterative solvers (right).

Translational Motion Only: The advantage of solvers R6Pw,t
v,C,t and R6Pw

v,C,t

is when the motion of the camera is purely translational, or close to it, which is
a common scenario in, e.g., a moving car or a moving train. In such cases, both
original R6P and R6P[v]×

v,C,w,t provide significantly worse estimates of the camera
pose. We explain this by the fact that R6Pw,t

v,C,t and R6Pw
v,C,t are constrained to

estimate only camera translation in the initial step, whereas R6P and R6P[v]×
v,C,w,t

try to explain the image noise by the camera rotation. See Fig. 2 left. This fact
can be used to create a “joined solver” that runs both R6Pw

v,C,t and R6P[v]×
v,C,w,t

and gives better performance than R6P [18] while still being significantly faster.

Convergence: For R6Pw,t
v,C, R6Pw

v,C,t, and R6Pw,t
v,C,t, the maximum 5 iterations

might not be enough to converge to a good solution, whereas R6P[v]×
v,C,w,t seems

to perform at its best. We thus increased the maximum number of iterations.
Figure 3 (left) shows that the performance of R6Pw,t

v,C, R6Pw
v,C,t, and R6Pw,t

v,C,t is
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Fig. 4. Experiment showing the effect of the linearized camera pose which is present
in all models. The further the camera orientation is from the linearization point, the

worse are the results. R6P
[v]×
v,C,w,t matches the results of R6P and so does R9P.
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Fig. 5. Increasing the camera motion and estimating camera pose with all solvers being

initialized with P3P. R6P
[v]×
v,C,w,t and R9P now provide consistently excellent results,

comparable or outperforming those of R6P at a fraction of the computation cost.
R6Pw,t

v,C, R6Pw
v,C,t and R6Pw,t

v,C,t with 50 iterations now perform better than P3P, but
still not as good as the other RS solvers.

improved by increasing the maximum number of iterations to 50. However, it is
still far below the performance of R6P, R6P[v]×

v,C,w,t, and R9P. R6P[v]×
v,C,w,t performs

as well as the R6P even with a single iteration, making it two orders of magnitude
faster alternative. The algebraic error, evaluated on the Eq. (5), of the three
viable solvers converges within 8 steps on average, see Fig. 3 (right).

The Effect of Linearized Camera Rotation Model: Since all the proposed
solvers have a linearized form of the camera orientation, in the same way as
R6P [18], we tested how being further from the linearization point affects the
performance (Fig. 4). The camera orientation was set to be at a certain angle
from R = I. The camera velocities were set to 0.15 per frame for the translation
and 15◦ per frame for the rotation. In [18] the authors show that R6P outper-
forms P3P in terms of camera center estimation up to 6◦ away from the initial
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Table 1. Average timings on 2.5 GHz i7 CPU per iteration for all used solvers.

Solver P3P R6P R6P
[v]×
v,C,w,t R6Pw

v,C,t R6Pw,t
v,C,t R6Pw,t

v,C R9P

Time per iteration 3µs 1700µs 10µs 24µs 30µs 27µs 20µs

max # of solutions 4 20 1 1 1 1 1

R estimate and up to 15◦ away from R for the camera orientation estimate. Our
results in Fig. 4 show similar behavior and identical results of R6P and R6P[v]×

v,C,w,t.
R9P performs comparable to both, even slightly outperforming them in terms
of camera orientation estimation.

Using P3P as Initial Estimate: Last synthetic experiment shows the perfor-
mance of the solvers when using the initial estimate of R from the result of P3P.
The camera orientation was randomly generated and the camera motion was
increased as in the first experiment. P3P was computed first and the 3D scene
was pre-rotated using R from P3P. This shows probably the most practical usage
among all R6P solvers. To make the figure more informative, we chose the num-
ber of iterations for R6Pw,t

v,C, R6Pw
v,C,t, and R6Pw,t

v,C,t to be 50 as the 5 iterations
already proved to be insufficient, see Fig. 1. We also set the maximum number
of iterations for R6P[v]×

v,C,w,t to 1, to demonstrate the potential of this solver.

As seen in Fig. 5, R6P[v]×
v,C,w,t provides at least as good, or even better, results

than R6P after only a single iteration. This is a significant achievement since
the computational cost of R6P[v]×

v,C,w,t is two orders of magnitude less than of
R6P. With 50 iterations the other iterative solvers perform better than P3P, but
considering the computational cost of 50 iterations, which is even higher than
that of a R6P, we cannot recommend using them in such a scenario.

Computation Time: The computation times for all the tested solvers are
shown in Table 1. One iteration of R6P[v]×

v,C,w,t is two orders of magnitude faster

than R6P. According to the experiments, even one iteration of R6P[v]×
v,C,w,t pro-

vides very good results, comparable with R6P and 5 iterations always match the
results of R6P or even outperform them at 34× the speed. Note that R9P can
be even faster than R6P[v]×

v,C,w,t because it is non-iterative and runs only once and

is therefore as fast as 2 iterations of R6P[v]×
v,C,w,t. One iteration of R6Pw,t

v,C, R6Pw
v,C,t

and R6Pw,t
v,C,t is around three times slower than R6P[v]×

v,C,w,t but still almost two
orders of magnitude faster than R6P.

4.2 Real Data

We used the publicly available datasets from [1] and we show the results of the
same frames shown in [18] (seq1, seq8, seq20 and seq22) in order to make a
relevant comparison. We also added one more real dataset (House), containing
high RS effects from a fast moving drone carrying a GoPro camera. The 3D-2D
correspondences were obtained in the same way as in [18] by reconstructing the
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scene using global shutter images and then matching the 2D features from the
RS images to the reconstructed 3D points.

We performed RANSAC with 1000 iterations for each solver to estimate the
camera pose and calculated the number of inliers. The inlier threshold was set to
2 pixels in the case of the data from [1] which was captured by handheld iPhone
at 720p and to 8 pixels for the GoPro footage which was recorder in 1080p. The
higher threshold in the second case allowed to capture a reasonable number of
inliers even for such fast camera motions. The results in Fig. 6 show the number
of inliers captures over the sequences of images. We see that the performance of
R6P[v]×

v,C,w,t with 5 iterations is virtually identical to R6P. The results of R6Pw,t
v,C,t

and R6Pw
v,C,t are also very similar and often outperform R6P and R6P[v]×

v,C,w,t,
except for the most challenging images in the House dataset.

The performance of R6Pw,t
v,C is unstable, sometimes performing comparable to

or below P3P. In seq20 in particular, there is almost exclusively a fast transla-
tional camera motion. The drop in performance can therefore be explained by
R6Pw,t

v,C being the only solver that does not estimate the translational velocity
t in the first step. R9P performs solidly across all the experiments and on the
most challenging House dataset it even provides significantly better results.

To test another useful case of camera absolute pose, which is augmented real-
ity, we created an environment filled with Aruco [21] markers in known positions.
We set up the markers in such a way that they covered three perpendicular walls.
The scene was recorded with a camera performing translational and rotational
motion, similar to what a human does when looking around or shaking the head.

All solvers were used in RANSAC with 100 iterations to allow some robust-
ness to outliers and noise. Note that 100 iterations of RANSAC would take at
least 200 ms for R6P excluding the inlier verification. That makes R6P not valu-
able for real time purposes (in practice only less than 10 iterations of R6P would
give realtime performance). On the other hand, 100 runs of R6P[v]×

v,C,w,t with 5 iter-
ations take around 5 ms (200 fps) and R6Pw

v,C,t takes around 12.5 ms (80 fps).
We did not test solvers R6Pw,t

v,C, R6Pw,t
v,C,t and R9P in this experiment. This is

because the performance of R6Pw,t
v,C is unstable, the performance of R6Pw,t

v,C,t is
almost identical to R6Pw

v,C,t and with R9P we do not have a way to extract the
camera motion parameters and the reprojection without these parameters does
not provide fair comparison.

We evaluated the reprojection error in each frame on all the detected mark-
ers. The results are shown in Fig. 7. All the rolling shutter solvers outperform
P3P in terms of precision of the reprojections. R6P[v]×

v,C,w,t again provides iden-
tical performance to R6P. R6Pw

v,C,t has a slight edge over the others, which is
interesting, considering its poor performance on the synthetic data.

Figure 7 gives a visualization of the estimated camera pose by reprojecting
a cube in front of the camera. There is a significant misalignment between the
cube and the scene during camera motion when using P3P pose estimate. In
comparison, all the rolling shutter solvers keep the cube much more consistent
with respect to the scene.
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Fig. 6. Number of inliers on real data sequences. From top to bottom, left to right:
seq01, seq08, seq20, seq22 and House. The x axis contains frame numbers. The bar
graph for the House figure is used because there is no temporal relationship between
adjacent frames so a line graph does not make sense. Following are sample images from
the House dataset frame 6, containing a high amount of RS distortion. In this frame,
R9P provided significantly more inliers than other methods. The results of R6P and

R6P
[v]×
v,C,w,t are again identical, with the small exception of the first frame. The colored

inliers in the sample images follow the same colors of algorithms as in the bar graph
for House sequence. (Color figure online)
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Fig. 7. Histogram of reprojection errors on the Aruco markers in the augmented reality

experiment. The rolling shutter absolute pose solvers (R6P in magenta, R6P
[v]×
v,C,w,t in

green, R6Pw
v,C,t in cyan) keep the cube in place during camera motion whereas P3P

(red) reprojects the cube all over the place. (Color figure online)

5 Conclusions

We revisited the problem of rolling shutter camera absolute pose and proposed
several new practical solutions. The solutions are based on iterative linear solvers
that improve the current state-of-the-art methods in terms of speed while pro-
viding the same precision or better. The practical benefit of our solvers is also
the fact that they provide only a single solution, compared to up to 20 solutions
of R6P [18].

The overall best performing R6P[v]×
v,C,w,t solver needs only a single iteration

to provide similar performance to R6P while being approximately 170x faster.
At 5 iterations the performance of R6P is matched while the new R6P[v]×

v,C,w,t

solver is still approximately 34x faster than R6P. This allows for much broader
applicability, especially in the area of augmented reality, visual SLAM and other
real-time applications.

We also proposed 3 other iterative linear solvers (R6Pw,t
v,C, R6Pw,t

v,C,t, R6Pw
v,C,t)

that alternate between estimating different camera pose and velocity parameters.
These three solvers are slower than R6P[v]×

v,C,w,t but still almost two orders of

magnitude faster than R6P. While not as precise as R6P or R6P[v]×
v,C,w,t in the

synthetic experiments, they proved usefulness on the real data, providing more
inliers and better reprojections than P3P and even R6P. We presented these
three solvers mainly because they follow the concept of making the rolling shutter
absolute pose equations linear by alternatively fixing some variables and then
others. Although R6Pw,t

v,C,t and R6Pw
v,C,t do not offer the fastest and most precise

results, they performed best in some of the experiments, especially for purely
translational motion, and we think they are worth mentioning.

Last but not least we presented a non-iterative linear solver that uses 9 cor-
respondences. This solver is as fast as 2 iterations of R6P[v]×

v,C,w,t and proved to be
the most precise in terms of estimated camera pose in the synthetic experiments
and provided solid performance on the real data.
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Altogether, this paper presents a big step forward in practical computation
of rolling shutter camera absolute pose, making it more available in real world
applications.
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