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Abstract

Style transfer is to render given image contents in given
styles, and it has an important role in both computer vi-
sion fundamental research and industrial applications. Fol-
lowing the success of deep learning based approaches, this
problem has been re-launched very recently, but still re-
mains a difficult task because of trade-off between preserv-
ing contents and faithful rendering of styles. In this paper
we propose an end-to-end two-stream Fully Convolutional
Networks (FCNs) aiming at balancing the contributions of
the content and the style in rendered images. Our proposed
network consists of the encoder and decoder parts. The en-
coder part utilizes a FCN for content and a FCN for style
where the two FCNs are independently trained to preserve
the semantic content and to learn the faithful style represen-
tation in each. The semantic content feature and the style
representation feature are then concatenated adaptively and
fed into the decoder to generate style-transferred (stylized)
images. In order to train our proposed network, we em-
ploy a loss network, the pre-trained VGG-16, to compute
content loss and style loss, both of which are efficiently
used for the feature concatenation. Our intensive experi-
ments show that our proposed model generates more bal-
anced stylized images in content and style than state-of-the-
art methods. Moreover, our proposed network achieves ef-
ficiency in speed.

1. Introduction

How New York looks like in “The Starry Night” by Vin-
cent van Gogh is an interesting question and, at the same
time, difficult to answer. In practice, re-painting a famous
fine-art style takes much time and requires well-trained
artists. Answering this question can be stated as the prob-
lem of migrating semantic content of one image to different
styles, and it is called style transfer.

Style transfer is long-standing and has fallen into im-
age synthesis problem which is a fundamental research in
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Figure 1: Example of stylized results. Left-most column:
content image (large) and style image (small). From left to
right: the stylized image by our method, Johnson et al. [5],
Huang et al. [6], and Gatys et al. [4]. Our results surrounded
with red rectangles are more balanced in content and style
than the others.

computer vision. Style transfer has its origin from non-
photo-realistic rendering [!] and is closely related to tex-
ture synthesis and transfer [2, 3]. Along with the impressive
progress of various tasks in computer vision using deep neu-
ral networks, this topic has very recently been re-launched
in both academy and industry. Gatys et al. [4] showed that
the image representation derived from a Convolutional Neu-
ral Network (CNN) can be used to represent the semantic
content of an image and the style, which opened up a new
trend of CNN-based style transfer.

CNN-based approaches in style transfer fall into two
categories [7]: Descriptive methods based on Image Iter-
ation (DII) and Generative methods based on Model Itera-
tion (GMI). The key idea of DII is to synthesis a stylized
image by directly updating pixels in the image iteratively
through the back-propagation. The DII such as [4, 8, 9]
starts with a noise image and iteratively update the image
by changing the distribution of noise along with the statis-
tics of content and style until the defined loss function is
optimally minimized. GMI such as [5, 6, 10, 11], on the
other hand, first optimizes a generative model through iter-



ations, and then renders the stylized image using a forward
pass. In order to optimize the generative model, GMI trains
each feed-forward model for each specific style by using the
gradient descent over a large dataset. DII is known to pro-
duce better stylized results in quality than GMI [7], while
GMI has more efficiency in speed.

Although existing methods [4, 5, 6, 8, 9, 10, 11] show the
capability of rendering image contents in different styles,
generated stylized images are not always well balanced in
content and style. Such methods take care of either the con-
tent or the style, but not both, producing unbalanced stylized
images. DII is good at faithfully rendering the style while it
tends to lose the content. GMI, on the other hand, preserves
more semantic content than the style. How to keep the bal-
ance between the content and the style in style transfer is a
crucial issue to improve the quality of stylized images. An-
other important issue to address is the computational speed.
Although GMI such as [5, 6, ] are able to produce
stylized images fast, they rely on a strong computational
power. Therefore, either DII or GMI is hard to apply to
real-time applications.

We propose an end-to-end two-steam network for bal-
ancing the content and style in stylized images where con-
tributions of the content and the style are adaptively taken
into account. The encoder part of our network consists of
the content stream and the style stream where the streams
have different architectures. The two streams are indepen-
dently trained to learn the semantic content or the style rep-
resentation. The content features and the style features are
then combined in our proposed adaptive concatenation layer
to ensure the balanced contribution of each stream. As the
decoder part of our network, we use the feed-forward model
to reduce the rendering time while we spend much time on
learning like [5, 6]. We employ the instance incremental
learning strategy [12] in the network training, which allows
our network not only to accommodate fast training but also
to easily adapt new styles. Our experiments demonstrate
that our method produces more balanced stylized images
in both content and style than the state-of-the-art methods
(Fig. 1). They also show that our method runs about 10x
faster than the state-of-the-art methods. We remark that our
proposed model is trained for one style only, but it is easy to
be fine-tuned to other styles incrementally with a low cost.

)

2. Related work

Early work on style transfer was reported in the context
of texture synthesis. Some methods there used histogram
matching [ | 3] and/or non-parametric sampling [2, 3]. These
methods had limited results because they relied on hand-
crafted low-level features and often failed in capturing fea-
tures in semantic levels from the content and the style.

Gatys et al. [4] for the first time proposed a method us-
ing CNNs and showed remarkable results. Their method
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trains CNNS to learn the semantic information from content
images and matched it with the distribution of the style. It
starts from a randomly distributed noise image and itera-
tively updates the image to produce an image satisfying the
semantic distribution of the content image and appearance
statistics of the style. During the iteration, the weighted
sum of style loss and content loss is minimized. As follow-
up work of Gatys et al. [4], Luan et al. [8] proposed a
structure preservation method using Matting Laplacian for
photo-realistic style transfer. Mechrez et al. [9] utilized the
screened Poisson equation to make a stylized image more
photo-realistic. These approaches fall into the DII category,
and all face with the computational speed problem.

Johnson et al. [5], on the other hand, took GMI, propos-
ing a feed-forward CNN and used the perceptual loss func-
tion for gradient-based optimization. The perceptual loss
used there is similar to content and style loss in [4]. Their
model has only to pass the content image to a single forward
network to produce a stylized image, which is fast. Wang
et al. [10] also utilized the feed-forward network, and they
used multiple-generator to improve the quality of results.
These methods are fast in generating stylized images, but
they are capable of dealing with a single style only.

Dumoulin et al. [14] proposed a multi-style network that
introduces shared-computation in many style images where
they used instance normalization (IN) [15] for balancing
features from the content and from the style. They also
proposed an improvement of IN to learn a different set of
affine parameters for multi-styles in the batch way. How-
ever, their model can train a limited number of styles be-
cause the network capability is limited, meaning that the
number of styles to handle is limited. Chen et al. [11] pro-
posed a method that overcomes the limitation of the number
of styles by using a patch-based method. Their method first
extracts a set of patches from the content and style each,
and then, for each content patch, the method finds its clos-
est style patch and swaps their activation. In this way, their
method transfers an unlimited number of styles; however,
the cost for patch extraction and swapping increases the
computational time significantly.

Very recently, Huang et al. [6] proposed a new multi-
style transfer model that consists of two CNN streams for
content and style. They employed pre-trained VGG-16 to
extract content and style features and introduced Adaptive
Instance Normalization (AIN) that aligns the mean and the
variance of content features in accordance with those of
style features. Their method, however, used the same archi-
tecture for the content and for the style, causing unavoidable
unbalance between the content and the style because seman-
tic levels extracted from the content and the style should not
be the same in style transfer. Furthermore, AIN assumes
the standard distribution on pixel values of images, which
is not always ensured in styles when normalizing data. AIN



requires an expensive computational cost as well.

Differently from the methods above, we take into ac-
count the contributions of the content and the style through
a two-stream feed-forward network to balance the content
and the style in stylized images. In particular, our proposed
two-stream network is different from [6] in that our network
has different depths in layer for the content and the style en-
coders to extract different semantic levels of the content and
the style. In addition, our method employs the instance in-
cremental learning strategy [12] to make our network easy
to fine-tune to other styles with a cheap computational cost,
enabling our method to deal with multi-styles. This strategy
also helps our method to speed up rendering time.

3. Proposed method

3.1. Network design

Our model follows the encoder-decoder architecture for
the end-to-end rendering of the content in a given style [5,
]. The network in [5, 10, 1 1] possesses only one en-
coder to extract the semantic content and style. This means
that the extracted semantic level of the content and that of
the style are the same. When we stylize images, the role of
the content should be different from that of the style because
the content gives us what exist (object shapes and locations)
in the rendered image and the style gives us the impression
of the rendered image. Accordingly, the semantic level used
for the rending should be different depending on the content
or the style. Otherwise, unbalance between the content and
style remains in stylized images. We thus design a network
having two encoders in which their architectures are differ-
ent from each other to extract different semantic levels of
the content and the style. With two encoders, our model
treats the content and the style in different ways, allowing
the network to be able to balance the roles of the content and
the style better than the model having only one encoder.

)

Ideally, the network should be able to retain the seman-
tics of the content as well as the statistics of the style as
much as possible. The semantic content and style of an im-
age are captured at different layers in the network [4]: the
network obtains the style at low-level layers in depth while
high-level layers become more sensitive to the actual con-
tent of the image. We thus design the encoders with differ-
ent depths to retain useful information from both the con-
tent and the style. Namely, we design a deep encoder for
the content and a shallow encoder for the style. Because the
content feature and the style feature are extracted at differ-
ent levels in the network, they have different characteristics.
We thus introduce an effective concatenation to enhance the
contribution of these features for good performances instead
of implementing their simple concatenation.
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3.2. Network architecture

Figure 2 illustrates our proposed two-stream network ar-
chitecture, which consists of three Fully Convolutional Net-
works (FCNs): two encoders and one decoder. We de-
velop a deep network, called the content subnet (the first
encoder), to extract content feature ¢. from a content im-
age, and a shallow network, called the style subnet (the sec-
ond encoder), to extract style feature ¢ from a style image.
These features are adaptively concatenated using the bal-
ance weight and then fed into a deep network, called the
generator subnet, to produce a stylized image. We employ
the VGG-16 model [16] as the loss network in the training
phase.

In the training phase, content images and style images
are resized to the size of 256 x 256 and then fed into the
proposed network to produce stylized images with the same
size. Although we train the network on images with the size
of 256 x 256, the network can accept any size of images in
testing. We remark that the size of the content image and
that of the style image have to be the same.

3.2.1 Content subnet

The content subnet is a stack of six convolution layers with
the filter size of 3 x 3, and the padding size of 1 x 1. We
use the stride of 2 x 2 at the third, the fifth, and the sixth
layers to reduce the size of feature maps and the stride of
1 x 1 at the other layers. The numbers of the output chan-
nels are 32, 48, 64, 80, 96, and 128, respectively. Each
convolution layer is followed by a spatial instance normal-
ization layer [15] (because of its effectiveness in style trans-
fer [15]) and a Rectified Linear Unit (ReLU) layer [17]. In
order to avoid the border artifacts caused by convolution,
the reflection-padding is used instead of the zero-padding
similarly to [14].

3.2.2 Style subnet

The style subnet, which has four convolution layers, is shal-
lower than the content subnet. All convolution layers have
the filter size of 3 x 3, the reflection-padding of 1 x 1, and
the stride of 2 x 2, except for the first layer that employs
the stride of 1 x 1. The numbers of the output channels are
32, 64, 96, and 128, respectively. Similarly to the content
subnet, each convolution layer is also followed by a spatial
instance normalization layer [15] and a ReLU layer [17].
Feature maps ¢. and ¢ extracted from the content sub-
net and the style subnet respectively are concatenated before
being fed into the generator subnet. To take into account the
contributions of ¢. and ¢,, we introduce the adaptive con-
catenation layer with the balance weight  (cf. Section 3.4).
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Figure 2: Framework of our proposed method. Our network consists of two encoders having different architectures and one
decoder. The loss network is used to train the encoders and the decoder.

3.2.3 Generator subnet

The generator subnet consists of five residual blocks, three
deconvolution layers, and two convolution layers in this or-
der.

Johnson et al. [5] argues that the residual block can en-
rich the information involved in the input feature. We,
therefore, use residual blocks to increase the impact of the
balance weight ~y in the concatenated feature. Similarly to
[5], we use five residual blocks outputting 256 channels,
where each of them has two convolution layers with the fil-
ter size of 3 x 3, the reflection-padding of 1 x 1, the stride
of 1 x 1, and a summation layer as in [18]. All convolu-
tion layers are followed by a spatial instance normalization
layer [15] (we use it to replace the batch normalization [19]
in the original architecture [18]) and a ReL.U layer [17].

To upscale the feature map, we employ three deconvolu-
tion layers with the same filter-size of 3 x 3, the reflection-
padding of 1 x 1, and the stride of 2 X 2, outputting 128, 96,
and 64 channels, respectively.

In order to eliminate the affect of the convolution stride,
we use two convolution layers which have the filter-size of
1x1, the padding of 0 x 0, and the stride of 1 x 1, outputting
32 and 3 channels. All deconvolution layers and convolu-
tion layers are followed by a spatial instance normalization
layer [15] and a ReLLU layer [17], except for the last convo-
Iution layer that uses the tanh function to guarantee that the
range of the output is [0, 255].

3.3. Loss function

We employ two loss functions for content loss and style
loss, which are computed from layers of the loss network.
The content loss £, computes the similarity of high-level
features between the content image and the stylized image.
The style loss Lg, on the other hand, computes the simi-
larity of low-level features between the style image and the
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stylized image.
The overall loss is a weighted sum of the content loss
and the style loss:

+ (1 - @)Es(ﬁ,’ys), (n

where y.,¥s, and ¢ denote the content image, the style,
and the stylized image, respectively. « is the combina-
tion weight (we set @ = 0.5 in our experiments to equally
weight these two loss functions).

We obtain the content loss at M layers as follows:

1
Z\fZCkX

HkXW

E(g, Ye, ys) = aﬁc('g» yc)

»Cc(:g',yc ”(I)k( ) (Dk(yC)H27

where @y, (-) denotes the normalized feature map at the k-th
layer, which has C, X Hj x W) elements.
The style loss is computed at N layers as follows:

Z IG(®(9))

kEN

Ls(

(Y, ys) = G(Px(ys))l Fs

where ||| 7 denotes the Frobenius norm [20]. G(®g(-)) is
the Gram matrix [20] of the normalized feature map at the
k-th layer. The Gram matrix G¢, x ¢, has elements G;; =
(vi,vj) where v;,v; are features at the i-th and the j-th
channels respectively of the feature map @ (-).

3.4. Adaptive concatenation layer

In our network, features extracted from the content sub-
net and the style subnet are concatenated before being fed
into the generator subnet. In order to weight the contribu-
tions of the content and the style in the final result, we in-
troduce the balance weight using £.(¢) and L(t) at the ¢-th
iteration as follows:

Ls(t)
Ls(t) + Le(t)

Ve



where ~; is the balance weight at the ¢-th iteration in the
training phase. To restrict the fluctuation of the balance
weight, we compute ~ at every T iterations and use it for
the next 7" iterations:

1 Z
V=T Z Ve (2)
t=1
Using ~, we concatenate content features and style fea-
tures in the adaptive concatenation layer as follows:

¢ = (7% ¢c) ®((1=7) X ds),

where ¢, ¢., and ¢s denote the concatenated feature, the
content feature, and the style feature, respectively. The
learned balance weight  ensures the balance of the con-
tributions of the content feature and the style feature. For
example, when Ly is smaller than £, (meaning v < 0.5 in
Eq. (2)), the contribution of style feature is increased in the
next iterations, and vice verse. Moreover, the learned bal-
ance weight vy is more advantageous than the fixed balance
weight that does not concern the balance of losses.

4. Experiments
4.1. Experiment setup

We used in our experiments, images in the MS-COCO
2014 dataset [21] as our content images, and six famous
paintings widely used in style transfer [4, 5, 6], as our style
images (cf. Fig. 3).

We used the MS-COCO 2014 training set for our train-
ing, and we randomly selected 20 images from the MS-
COCO 2014 validation set for our validation. In the testing
phase, on the other hand, we randomly selected 50 images
from MS-COCO 2014 validation (different ones from the
20 images used in our validation).

We compared our method with state-of-the-art meth-
ods: Gatys+[4], Johnson+[5], and Huang+[0]. We note that
Gatys+[4] is based on DII and the others are on GMI. For
[4], we used the re-implementation version by J. J ohnson'.
For the others, we used publicly available source codes with
parameters recommended by the authors. We remark that
we set 1000 iterations for Gatys+[4].

The proposed network was implemented in Torch [22].
Our method used the instance incremental learning strategy
for dealing with multiple styles. We conducted all exper-
iments using a PC with CPU core i7 3.7 GHz, 12 GB of
RAM, and GTX 770 GPU (4 GB of VRAM).

We used the VGG-16 model [16] pre-trained on the Im-
ageNet [23] as the loss network. All layers after relu4d_3
layer were dropped. We obtained the content loss at M = 1
layer, e.g., relu3_3, and the style loss at NV = 4 layers, e.g.,
relul_2, relu2_2, relu3_3, and relud_3 (M and N are de-
fined in Section 3.3).

Ihttps://github.com/jcjohnson/neural-style
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Figure 3: Styles used in experiments. From left to right:
Starry Night, Mosaic, Composition VII, La Muse, The
Wave, and Feathers.

4.2. Evaluation metric

We introduce a metric to evaluate how the stylized image
is balanced in content and style.

For each pair of content image c and style s, we compute
content loss L. and style loss £;. When L. and Ly are
almost same, we may say that the stylized image is well
balanced in content and style. This means that in the 2D
plane whose coordinate system is defined by content loss
and style loss, how close (L., L) is to the line of “content
loss”="“style loss” (called the balanced axis hereafter) can
be a criterion to evaluate how the stylized image is balanced
in content and style. The distance between the origin and
(L, L) is, of course, a criterion for evaluating the quality
of the stylized image.

We assume that we have K stylized images. We normal-
ize content loss and style loss for each stylized image over
K images:

o 1
1+exp(

1
L=
1+exp(

Le—=Le

Oc

) )

) )

where L., 0., Ls, and o are the mean and the standard devi-
ation of content loss and style loss over K stylized images,
respectively.

Let w (€ [0, 7]) denote the angle between the line going

Lo—Ls

Os

through the origin and (Z;, Z;) and the content loss axis or
the style loss axis (the smaller angle is selected):

tan~?! % if ZC > ES
w= @ o .
7/2 —tan~! % otherwise

Lager w indicates that (L., L) is closer to the balance
axis, meaning that the stylized image is more balanced in
content and style.

The quality of stylized images is evaluated using

[—2 —2
length =\ L. + Ls .

Using w and length above, we define our metric
balance:
tan(w)

balance = .
alance length

balance concerns both the criterion for balance and the cri-
terion for the quality. Therefore it is a useful metric for
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Figure 4: Content loss and style loss in validation set on the
Starry Night style.

evaluating stylized images. We note that larger balance is
better because tan(w) should be larger and length should
be smaller for better stylized images.

4.3. Training the model

Our method addresses a one-style model to reduce com-
putational time. To deal with multiple styles, we follow
instance incremental learning when training a new yet un-
known style. For the new style, we fine-tune parameters
from an existing model. With this learning strategy, our
method can easily adapt a new style with a lower cost than
existing work [4, 5, 6, 10]. Moreover, instance incremental
learning enables our method to cope with an unlimited num-
ber of styles fast unlike existing methods such as [ 1.

We first trained an initial model on the Starry Night style
and then incrementally fine-tuned on the other styles one
by one. We trained the network on the Starry Night style
with a batch size of 2 for 80k iterations corresponding to
2 epochs. The balance weight «y in Eq. (2) is re-computed
at every 1" = 500 iterations. All the training and validation
images are resized to 256 x 256. To train the model, we used
the Adam optimizer [24] with the learning rate of 103, the
moments 51 = 0.9 and B2 = 0.999, and the division from
zero parameter ¢ = 1075, We did not use the learning rate
decay and the weight decay.

For the initial model, we trained all subnets simultane-
ously with independently updating the weight of each sub-
net. Validation was performed at every 100 iterations during
the training process. When observing the content loss and
the style loss on the validation set, if any loss function raises
the overfitting problem, we stopped updating the weight of
the corresponding subnet. Fig. 4 illustrates our validation
loss on the Starry Night style (we see content loss and style
loss converge to almost the same value). We observed over-
fitting on style loss after one epoch (about 40k iterations).
The training of the style subnet was thus stopped, while
the weights of the other subnets were kept updated continu-
ously.

We incrementally fine-tuned the initial model to the other
styles one by one. 2000 images in the MS-COCO 2014
training set [2 1] were randomly selected as content images

s
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Table 1: Average of rankings. The two best results are given
in red and blue, respectively.

Style ‘ Qurs Johnson+[5] Huang+[0] Gatys+[4]
Starry Night 2.51 2.88 3.11 1.50
Mosaic 2.25 2.39 3.58 1.79
Composition VII| 2.72 2.95 2.38 1.95
La Muse 2.23 3.51 2.44 1.82
The Wave 1.90 3.00 2.72 2.38
Feathers 2.45 1.65 3.12 2.78
All together \ 2.34 2.73 2.89 2.04

for training. The network was trained for 1000 iterations
with the batch size of 2. The Adam optimizer [24] was also
used with the same parameters as the training of the initial
model. The balance weight « in Eq. (2) was re-computed at
every 1" = 50 iterations. The loss-based training technique
was also applied to avoid overfitting, where the validation
was performed at every 50 iterations.

4.4. Qualitative evaluation

Figure 5 shows examples of the obtained results, show-
ing that the stylized images obtained by our method are
more balanced in content and style. We also see that overall
the results obtained by Gatys+[4] reflect the style well, but
they mostly lose content (we cannot understand the content
of some results). In some styles (Starry Night, Composition
VII, and The Wave), we see that Johnson+[5] seems to ran-
domly select a patch in the style and paste it into the content
image. Huang+[6] also loses the content and suffers from a
so-called checkerboard effect.

To objectively compare the obtained results, we con-
ducted a user study. Namely, we presented 300 sets of im-
ages to 23 subjects where each set consists of the content
image, the style, and four output images obtained by our
method and three comparison methods [4, 5, 6]. We then
asked the subjects to rank the four output images at each
set (1st is best, and 4th is worst). We note that four output
images are aligned in the random order in each set and that
each set was displayed for 6 seconds. We also remark that
the combination of 50 content images and 6 styles results in
300 stylized images by each method.

Table 1 shows the average of rankings over 300 sets. We
see that our method takes the second best ranking among the
four methods. As DII is known to perform better in styl-
ized quality than GMI [7], Gatys+[4], which is DII, takes
the best ranking. Among the others (GMIs), our method
performed best. We remark that the single-style models
(ours, Gatys+[4], and Johnson+[5]) performed better than
the multi-style model (Huang+[6]).

We also computed the average of rankings in each style,
which is also illustrated in Table 1. Like the overall aver-
age, our method is ranked in the second place except for the
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Figure 5: Visual comparison of our method against the state-of-the-art methods. In each block, from left to right, a content
image (large one) with a style (small one) is followed by outputs by our method, Johnson+[5], Huang+[6], and Gatys+[4].
Our results surrounded with red rectangles are more balanced in content and style than the others. Note that all stylized

images are with the size of 512 x 512.

Table 2: Averages of length (smaller is better) and balance
(larger is better).

| Ours Johnson+[5] Huang+[0] Gatys+[]

0.59 0.87 0.78 0.73
1.09 0.63 0.65 0.84

length
balance

Composition VII style and the Wave style. This indicates
that our method performs stably independent of styles. We
note that the Composition VII style and the Wave style are
rather complex (Fig. 3) and, the results for these styles are
difficult to evaluate. Indeed, we received the feedback from
many subjects that ranking the stylized images for these
styles was pretty difficult.

4.5. Quantitative evaluation

In order to quantitatively evaluate the obtained results,
we computed the averages of length’s and balance’s over
300 sets for each method (Table 2). We see that our method
performs best both in length and balance. We also com-
puted the averages of length’s and balance’s in each style,
which is illustrated in Fig. 6. Fig. 6 shows that (1) our
method performs best in length for all the styles except
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Figure 6: Averages of length and balance in each style.

=Ours mJohnson+ mHuang+ = Gatys+

(a) length.

for the Wave style, and that (2) our method performs best
in balance for all the style images except for the Compo-
sition VII style and the Wave style. The fact that the per-
formances of our method degrade for these particular styles
is in good harmony with our qualitative evaluation results.
This is because as mentioned above, the stylized images us-
ing the Composition VII style or the Wave style are difficult
to evaluate according to subjects’ impression.

To look into the results in more detail using these styles
(the Composition VII and the Wave), we show the loss dis-
tribution of 50 stylized images in each style (Fig. 7). In
the case of the Composition VII style (Fig. 7c), we see that
our method preserves much more content than the style be-
cause the loss distribution appears far above the balanced
axis. This observation also holds true for the Wave style
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Figure 7: Loss distribution in each style. Red lines denote
the balanced axis. The distributions by our method exist
nearer the balanced axis than those of the other methods.

(Fig. 7e). We see that content loss in our method is smallest
among the four methods while style loss is not the case.
We can also see in Fig. 7e that our method successfully
reduces content loss while keeping style loss similarly to
that of Johnson+[5], indicating that our method outperforms
Johnson+[5]. We remark that (1) the content loss in our
method is smallest for all the styles and that (2) loss distri-
butions in our method appear (densely) near the balanced
axis for the other styles while those in the other methods do
not (for example, Figs. 7b,7d).

4.6. Computational speed

We measured the running time for generating 300 styl-
ized images with the sizes of 256 x 256 and 512 x 512 by
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Table 3: The average wall-clock time for producing one
stylized image.

Image size Time (seconds)

8 Ours Johnson+[5] Huang+[6] Gatys+[4]
256 x 256 | 0.12 1.12 1.98 74.12
512 x 512 | 0.46 3.79 6.78 269.6

a=0.7 a=0.9

Figure 8: Example of stylized images by changing « from
0.1t00.9.

each method and compared the average for generating one
stylized image by each method.

Table 3 illustrates the average of the running time in
generating one stylized image. As we see, our method is
the fastest and speeds up 10 times for the image size of
256 x 256 and 8 times for that of 512 x 512 when com-
pared with the second fastest one (Johnson+[5]). We can
thus conclude that our method is promising for real-time
applications.

5. Conclusion

We proposed an end-to-end two-stream network for bal-
ancing the content and style in stylized images. Our pro-
posed method utilizes a deep FCN to preserve the semantic
content and a shallow FCN to faithfully learn the style rep-
resentation, whose outputs are adaptively concatenated us-
ing the balance weight and fed into the decoder to generate
stylized images. Our intensive experiments demonstrate the
effectiveness of our proposed method against state-of-the-
art methods in term of balancing content and style. Further-
more, our proposed method outperforms the state-of-the-art
methods in speed.

Finally, we mention the role of « in Eq. (1). Since v in
Eq. (2) is learned through the content and the style losses so
that the two losses become well balanced, we need not adap-
tively change o anymore to balance the two losses. This is
the reason why we set &« = 0.5. In some sense, « plays the
role of the indicator for whether content or style is empha-
sized in obtained stylized images. If we choose smaller «,
style is more emphasized and results become more similar
to those by Gatys+[4] than the case of o = 0.5. For larger
«, content is more emphasized and results become more
similar to those by Johnson+[5] (see Fig. 8). Investigating
this role in more detail is left for future work.
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