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Video Salient Object Detection Using
Spatiotemporal Deep Features

Trung-Nghia Le and Akihiro Sugimoto

Abstract— This paper presents a method for detecting salient
objects in videos, where temporal information in addition to
spatial information is fully taken into account. Following recent
reports on the advantage of deep features over conventional
handcrafted features, we propose a new set of spatiotemporal
deep (STD) features that utilize local and global contexts over
frames. We also propose new spatiotemporal conditional random
field (STCRF) to compute saliency from STD features. STCRF
is our extension of CRF to the temporal domain and describes
the relationships among neighboring regions both in a frame and
over frames. STCRF leads to temporally consistent saliency maps
over frames, contributing to accurate detection of salient objects’
boundaries and noise reduction during detection. Our proposed
method first segments an input video into multiple scales and
then computes a saliency map at each scale level using STD
features with STCRF. The final saliency map is computed by
fusing saliency maps at different scale levels. Our experiments,
using publicly available benchmark datasets, confirm that the
proposed method significantly outperforms the state-of-the-art
methods. We also applied our saliency computation to the video
object segmentation task, showing that our method outperforms
existing video object segmentation methods.

Index Terms— Video saliency, salient object detection, spa-
tiotemporal deep feature, spatiotemporal CRF, video object
segmentation.

I. INTRODUCTION

SALIENT object detection from videos plays an important
role as a pre-processing step in many computer vision

applications such as video re-targeting [1], object detection [2],
person re-identification [3], and visual tracking [4]. Con-
ventional methods for salient object detection often segment
each frame into regions and artificially combine low-level
(bottom-up) features (e.g., intensity [5], color [5], edge orienta-
tion [6]) with heuristic (top-down) priors (e.g., center prior [7],
boundary prior [5], objectness [6]) detected from the regions.
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Fig. 1. Examples of results obtained by our proposed method. Top
row images are original video frames, followed by the ground truth and
corresponding saliency maps obtained using our method.

Low-level features and priors used in the conventional methods
are hand-crafted and are not sufficiently robust for challenging
cases, especially when the salient object is presented in a low-
contrast and cluttered background. Although machine learning
based methods have been recently developed [8]–[10], they are
primary for integrating different hand-crafted features [9], [11]
or fusing multiple saliency maps generated from various
methods [8]. Accordingly, they usually fail to preserve object
details when the salient object intersects with the image
boundary or has similar appearance with the background
where hand-crafted features are often unstable.

Recent advances in deep learning using Deep Neural Net-
work (DNN) enable us to extract visual features, called deep
features, directly from raw images/videos. They are more
powerful for discrimination and, furthermore, more robust
than hand-crafted features [12]–[14]. Indeed, saliency models
for videos using deep features [15]–[17] have demonstrated
superior results over existing works utilizing only hand-crafted
features. However, they extract deep features from each frame
independently and employ frame-by-frame processing to com-
pute saliency maps, leading to inaccuracy for dynamically
moving objects. This is because temporal information over
frames is not taken into account in computing either deep
features or saliency maps. Incorporating temporal information
in such computations should lead to better performance.

Computed saliency maps do not always accurately reflect
the shapes of salient objects in videos. To segment salient
objects as accurately as possible while reducing noise, dense
Conditional Random Field (CRF) [15], [18], a powerful graph-
ical model to globally capture the contextual information, has
been applied to the computed saliency maps, which results
in improvement in spatial coherence and contour localization.
However, dense CRF is applied to each frame of a video
separately, meaning that only spatial contextual information is
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considered. Again, temporal information over frames should
be taken into account for better performance.

Motivated by the above observation, we propose a novel
framework using spatiotemporal information as fully as pos-
sible for salient object detection in videos. We introduce
a new set of SpatioTemporal Deep (STD) features that
utilize both local and global contexts over frames. Our
STD features consist of local and global features. The
local feature is computed by aggregating over frames deep
features, which are extracted from each frame using a
region-based Convolutional Neural Network (CNN) [13]. The
global feature is computed from a temporal-segment of a video
using a block-based1 CNN [14]. We also introduce the Spa-
tioTemporal CRF (STCRF), in which the spatial relationship
between regions in a frame as well as temporal consistency of
regions over frames is formally described using STD features.
Our proposed method first segments an input video into
multi-scale levels, and then at each scale level, extracts STD
features and computes a saliency map. The method then fuses
saliency maps at different scale levels into the final saliency
map. Extensive experiments on public benchmark datasets for
video saliency confirm that our proposed method significantly
outperforms the state-of-the-arts. Examples of saliency maps
obtained by our method are shown in Fig.1. We also apply
our method to video object segmentation and observe that our
method outperforms existing methods.

The rest of this paper is organized as follows. We briefly
review and analyze related work in Section II. Then,
we present in detail our proposed method in Section III. Our
experiments are discussed in Sections IV and V. In Section VI,
we present an application of our proposed method to video
object segmentation. Section VII presents conclusion and
future work. We remark that this paper extends the work
reported in [19]. Our extensions in this paper are building a
new STCRF model utilizing CNN instead of Random Forest
(Section III-C.1), adding more experiments (Section V), and
an application of our method to video object segmentation
(Section VI).

II. RELATED WORK

Here we briefly survey features used for salient object
detection in videos, and saliency computation methods.

A. Features for Salient Object Detection
Saliency computation methods for videos using hand-crafted

features are mostly developed from traditional saliency models
for still images by incorporating motion features to deal with
moving objects [6], [7], [10], [20]. Motion features commonly
used include optical flow [6], [7], [20], trajectories of local
features [10], [21], gradient flow field [22], and temporal
motion boundary [23]; they are utilized to detect salient objects
in videos. Xue et al. [24], on the other hand, sliced a video
along X–T and Y –T planes to separate foreground moving
objects from backgrounds. However, hand-crafted features
have limitation in capturing the semantic concept of objects.
Accordingly, these methods often fail when the salient object

1In contrast to the region-based CNN working on spatial segments in each
frame, the block-based CNN works on a sequence of frames of a video.

crosses the image boundary or has similar appearance with the
background.

Several existing methods [15], [25] for saliency computation
using deep features, on the other hand, utilize superpixel
segmentation to extract region-level deep features in differ-
ent ways (e.g., feeding regions into a CNN individually to
compute deep features [25] or pooling a pixel-level feature
map into regions to obtain region-level deep features [15]).
To exploit the context of a region in multiple scales, multi-
scale deep features of the region are extracted by changing the
window size [25]. Li and Yu [25] fused multi-scale deep fea-
tures of a region of interest to compute the saliency score for
the region using a two-layer DNN. Lee et al. [17] integrated
hand-crafted features into deep features to improve accuracy
for salient object detection. More precisely, they concatenated
an encoded low-level distance map and a high-level feature
map from CNN to enrich information included in the extracted
feature map. The region-level feature map and the pixel-level
feature map are also integrated into the saliency model to
enhance accuracy of detected object boundaries [15]. In end-
to-end deep saliency models [16], [26], pixel-based deep
features are enhanced by their context information through
recurrent CNNs.

Saliency models using deep features have demonstrated
state-of-the-art performance in salient object detection and
significantly outperformed existing works utilizing only hand-
crafted features. However, in almost all existing saliency mod-
els, temporal information over frames is not taken into account
in deep features, leading to inaccuracy for dynamically moving
objects. Though Wang et al. [27] very recently proposed a
fully convolutional network (FCN) having a pair of frames
as its input for video saliency computation, a pair of frames
is too short to exploit the temporal domain. Therefore, effec-
tively mining correlation inherent in the spatial and temporal
domains into powerful deep features for saliency computation
is still an open problem.

B. Saliency Computation Methods

The salient object detection approach using deep mod-
els [15], [16], [18], [26], [28] computes saliency scores directly
from FCNs. In these deep models, recurrent layers [16], [26]
and skip connections [16], [18] are utilized to enhance the
contextual information of deep feature maps to improve the
accuracy of saliency computation. However, these methods
focus on frame-by-frame processing without considering any
temporal information in videos. In addition, they still do not
detect boundaries of salient objects accurately. A refinement
post-processing step is usually required to improve accuracy
of detected object boundaries.

Spatial CRF has the capability to relate local regions in
order to capture global context, and has been commonly used
for refinement in semantic segmentation [29] and for saliency
computation [15], [18]. Dense CRF [30] is used as a post-
processing step to refine the label map generated from CNN
to improve the performance of semantic segmentation [29].
Shimoda and Yanai [29] developed a weakly supervised
semantic segmentation method using a dense CRF to refine
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Fig. 2. Pipeline of the proposed method (brighter means more salient in the final saliency map).

results from distinct class saliency maps. The dense CRF is
incorporated into the saliency map computed from the CNN to
improve spatial coherence and contour localization [15], [18].
Though spatial information is successfully utilized using CRFs
in these methods, how to deal with temporal information is left
unanswered, which is crucial for videos.

Dynamic CRF (DCRF) [31] is an extension of the spatial
CRF toward to the spatiotemporal domain to exploit both
spatial and temporal information in videos. DCRF is con-
structed from consecutive video frames, where each pixel
connects to its neighboring pixels in both space (i.e., the same
frame) and time (i.e., the next frame and the previous frame).
DCRF has been used to enhance both spatial accuracy and
temporal coherence for object segmentation [31]–[33] and
saliency computation [10] in videos. Yi et al. [33] proposed
a framework using DCRF to improve fence segmentation in
videos. Wang and Ji [31] and Wang et al. [32] applied DCRF
to object segmentation and moving shadow segmentation in
indoor scenes in videos. SIFT flow features were incorporated
into DCRF to detect salient objects from videos [10]. However,
DCRF is a pixel-level dense graph; thus it is usually con-
structed using only two successive frames due to large memory
consumption. In addition, since the energy function of DCRF
is defined using the combination of classical hand-crafted
features such as color and optical flow, DCRF is not capable of
exploiting spatial and temporal information semantically. Our
proposed STCRF differs from DCRF in that STCRF is defined
over regions using STD features only, so that it is capable
of dealing with more successive frames and exploiting spatial
and temporal information semantically with less computational
cost.

Different from these existing methods, our proposed method
utilizes spatiotemporal information as much as possible when
both extracting deep features and computing saliency maps.
More precisely, our method uses STD features computed from
the spatiotemporal domain together with STCRF constructed
in the spatiotemporal domain to produce accurate saliency
maps. Our method thus accurately detects boundaries of salient
objects by removing irrelevant small regions.

III. PROPOSED METHOD

A. Overview
Our goal is to compute a saliency map to accurately segment

salient objects in every frame from an input video while fully
utilizing information along the temporal dimension. Figure 2
illustrates the pipeline of our proposed method.

We segment an input video at multiple scale levels and
compute a saliency map at each scale level at each frame,
and then aggregate all saliency maps at different scale levels at
each frame into a final saliency map. This follows our intuition
that objects in a video contain various salient scale patterns
and an object at a coarser scale level may be composed of
multiple parts at a finer scale level.

In this work, we employ the video segmentation
method [34] at multiple scale levels. We first specify the num-
ber of initial superpixels to define a scale level. For each scale
level, we then segment each frame into initial superpixels using
entropy-rate superpixel segmentation [34]. Similar superpixels
at consecutive frames are then grouped and connected across
frames to have temporal segments using parametric graph
partitioning [35]. By specifying different numbers of initial
superpixels, we obtain multiple scale temporal segments (we
set four numbers to have four scale levels in our experiments as
discussed later). We remark that each scale level has a different
number of segments, which are defined as (non-overlapping)
regions.

The final saliency map is computed by taking the average
value of saliency maps over different scale levels. In the
following subsections, we explain how to compute a saliency
map at a scale level. We remark that a saliency map in this
section indicates the saliency map at a scale level unless
explicitly stated with “final.”

B. Spatiotemporal Deep Feature Extraction

For each region (segment) at each frame, our proposed STD
feature is computed by concatenating a local feature and a
global feature. The local feature is extracted using a region-
based CNN followed by aggregation over frames, while the
global feature is computed using a block-based CNN whose
input is a sequence of frames of the video. The STD feature
extraction for a region is illustrated in Fig. 3.

1) Local Feature Extraction: A region at each frame, which
is defined from a temporal segment at a frame, is fed into a
region-based CNN to extract its region-based feature which is
with a dimension of 4096. As our region-based CNN, we use
the publicly available R-CNN model2 [13] that was pre-trained
on the ImageNet ILSVRC-2013 challenge dataset [39].

The region-based feature contains the local context of the
region but does not contain temporal information because it

2R-CNN runs at the original resolution of its input region while Fast R-
CNN [36], Faster R-CNN [37], and Mask R-CNN [38] require to reduce the
resolution of the region to adapt their architectures. This resolution reduction
may eliminate small regions. We thus used R-CNN.
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Fig. 3. Spatiotemporal deep (STD) feature extraction for a region. A region (yellow) in a frame of a video block is fed to the region-based CNN to have the
region-based feature of the (yellow) region in the frame. Region-based features over the frames of the video block are aggregated to have the local feature
of the region. On the other hand, the video block is fed to the block-based CNN to have the global feature. The local feature of the region and the global
feature are concatenated to form the spatiotemporal deep (STD) feature of the region.

is computed frame-by-frame. In order to incorporate tempo-
ral information, for a region, we aggregate its region-based
features over a sequence of frames, resulting in the consistent
local feature over time for the region. It is important to remark
that we use only neighboring frames whenever a region-of-
interest is present. Thus, the number of frames used for this
aggregation may change depending on the region.

Just uniformly averaging region-based features over frames
is not wise because pixels vary over time due to lossy com-
pression, degrading accuracy of corresponding regions across
frames. This degradation increases with larger time increments
across frames. We thus linearly combine region-based features
at neighboring frames, similarly to [6], using weights modeled
by a Gaussian distribution centered at the frame from which
we compute local features. With these weights, region-based
features at frames with large temporal distance to a frame of
interest will contribute less to the computation of local features
of the frame: the local feature FL(i, t) of a region i at frame
t is extracted by

FL(i, t) = 1

�

t+k/2∑

t ′=t−k/2

G
(

t ′|t, σ 2
)

f (i, t ′), (1)

where G (
t ′|t, σ 2

)
is a Gaussian distribution with mean t and

standard deviation σ = 2 expressing distribution of temporal
weights, f (i, t ′) is the region-based feature of region i at frame
t ′, and � = ∑t+k/2

t ′=t−k/2 G
(
t ′|t, σ 2

)
(normalizing factor). k + 1

is the number of frames where the region i is always present.
In this work, we set k = 16 by default. This is because

almost all regions at a frame are present in the next (previous)
8 successive frames. For a region that disappears during the
next 7 successive frames or that newly appears during the
previous 7 successive frames, we first identify the maximum
number of successive frames in which the region is always
present in the previous and the next directions and use this
number as k for the region. For example, if a region in a frame
appears from 3 frames before and disappears in 2 frames after,
then we set k = 4(= 2 × 2) for this region.

2) Global Feature Extraction: To compute a global feature,
we feed a video block (sequence of frames) of a video
into a block-based CNN. The global feature obtained in this
way takes its temporal consistency into account in its nature.
As our block-based CNN, we employ the C3D model [14]
pre-trained on the Sports-1M dataset [40], which is known to
be effective for extracting spatiotemporal features for action
recognition. As an input video block, frame t is expanded into
both directions in the temporal domain to obtain a 16-frame
sequence as suggested by Tran et al. [14]. For each input
block, we feed it into the pre-trained C3D model only once
and assign the extracted global feature FG(t) with a dimension
of 4096 identical to all the regions in the block. This distributes
the global context to each region and, at the same time, reduces
the computational cost.

Finally, for a region i of a frame t , we concatenate its local
and global feature vectors to obtain its STD feature vector
F(i, t) whose dimension is 4096×2: F(i, t) = FL(i, t)⊕FG(t)
(cf. Fig. 3).

C. Saliency Computation Using Spatiotemporal CRF

CRF is used to improve accuracy (particularly in object
boundaries) of the saliency map while reducing noise because
CRF captures the spatial relationship between regions in a
frame. We extend CRF toward the temporal domain to have
the ability to capture temporal consistency of regions over
frames as well. We call our extended CRF, SpatioTemporal
CRF (STCRF in short).

1) STCRF Graph Construction: For temporal segments of a
video block, we construct a STCRF graph. Each vertex of the
graph represents a region, which is defined from a temporal
segment at a frame, in the block. Each edge of the graph,
on the other hand, represents the neighboring relationship
between regions in space or in time. Considering all the
neighboring relationships, however, leads to a dense graph
especially when the video volume is large, and the constructed
graph becomes practically useless in considering memory
consumption and processing time in the inference process.
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Fig. 4. Saliency computation pipeline for a video block based on a graphical model.

We therefore employ edges that only represent adjacency
relationship (cf. Fig. 4). Furthermore, we partition the video
into a sequence of consecutive blocks so that inference in each
block is performed separately.

In the experiments, an input video is decomposed into
overlapping blocks with a fixed size where the overlapping rate
is 50%. We note that each block length is equal to 16 frames
(see Section V-C.4). The saliency score of a region is refined
by uniformly averaging saliency scores of the region over all
the blocks that contain the region. This reduces processing
time while keeping accuracy.

2) Energy Function for STCRF: We define the energy func-
tion of the STCRF so that probabilistic inference is realized by
minimizing the function. The energy function E has a video
block (with its temporal segments) x as its input. E is defined
by the unary and the binary terms with labels representing
foreground/background l = {li ∈ {0, 1}|i ∈ V } where li is the
label for region i , and V is the set of vertices, i.e., regions in
x:

E(l, x; θ) =
∑

i∈V
ψu(li ; θu)+

∑

(i, j )∈E
ψb(li , l j ; θb), (2)

where ψu and ψb are the unary and binary potentials given
below. E is the set of edges of the STCRF graph. θ = (θu, θb)
is the model parameter.

a) Unary potential: The unary potential for region i is
defined using the label of the region:

ψu (li ; θu) = θu ω(F(i, ti )), (3)

where ti is the frame in which region i exists, and ω is a
function estimating the probability of the region being the
foreground.

To compute ω, i.e., the probability of the region being the
foreground, we employ the DNN proposed by Wang et al. [41]
and modify it for our problem (cf. Table I). Namely, right
before the last fully connected layer of the original network,
we add a dropout layer and a fully connected layer followed
by a Rectified Linear Unite (ReLU) [42] layer (Nos. 15, 16,
and 17 in Table I) to increase the depth of the network.
We then appropriately change the output channel of the first
fully connected layer (Nos. 1, 2, and 3).

Hence, our used network, called Foreground-Deep Neural
Network (F-DNN in short), consists of 7 fully connected

TABLE I

ARCHITECTURE OF THE OUR F-DNN

layers. Each layer executes a linear transformation followed by
the ReLU operator. Dropout operations with the ratio of 0.5 are
applied after ReLU layers during the training process to avoid
overfitting. To the input STD feature having 8192 channels,
the numbers of output channels gradually reduce to 2048 at the
first three fully connected layers and to 1024 at the next three
layers. The last fully connected layer has two output channels
representing foreground and background classes.

b) Binary potential: The binary potential provides the
deep feature based smoothing term that assigns similar labels
to regions with similar deep features. Depending on spatial
adjacency or temporal adjacency, the potential is differently
formulated with further separation of θb into θbs and θbt:

ψb
(
li , l j ; θb

) =
{
θbs�bs

(
li , l j

)
(i, j) ∈ Es

θbt�bt
(
li , l j

)
(i, j) ∈ Et ,

(4)

where Es and Et respectively denote the set of edges represent-
ing spatial adjacency and that representing temporal adjacency.
Note that E = Es ∪ Et and Es ∩ Et = ∅.
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�bs and �bt are spatial smoothness and temporal smooth-
ness between two regions:

�bs(li , l j )

= (1−δli l j )D(i, j)−1 exp
(
−βs

∥∥F(i, ti )−F( j, t j)
∥∥2

)
, (5)

�bt
(
li , l j

)

= (
1−δli l j

)
φ(i, j) exp

(
−βt

∥∥F(i, ti )−F( j, t j)
∥∥2

)
, (6)

where δ is the Kronecker delta and D(i, j) is the Euclidean
distance between the two centers of regions i and j . φ is the
ratio of the area matched by the optical flow inside the two
temporally different regions [43]. F(i, ti ) is the STD feature
of region i (which exists in frame ti ). The parameters βs and
βt are chosen similarly to [44] to ensure the exponential term
switches appropriately between high and low contrasts:

βs = 1

2
(

∑

(i, j )∈Es

∥∥F(i, ti )− F( j, t j )
∥∥2
)−1, (7)

βt = 1

2
(

∑

(i, j )∈Et

∥∥F(i, ti )− F( j, t j )
∥∥2
)−1. (8)

We remark that to compute the weight φ, we first count
the area transformed from a temporal segment (region) at a
frame to its corresponding region at the next frame via optical
flow and vice versa, and then take the average of ratios of
the areas. In the temporal domain, this weight is better than
the Euclidean distance because it is independent of the speed
of the motion [43]. In this work, we employ the deep flow
method [45] to transfer pixels in the temporal segment.

3) Saliency Inference: Saliency scores for regions are
obtained in terms of labels by minimizing the energy function:

l̂ = arg min
l

E(l, x; θ), (9)

We minimize E in Eq. (2) by iterating the Graph Cut
method [46], which shows the effectiveness in CRF-based
energy minimization [47], and is popularly used for object
segmentation [48], [49]. The inputs are initial label l , block
(with its temporal segments) x, and model parameter θ . The
minimization is then executed as the iterative expectation-
maximization [50] scheme until convergence. In each iteration,
the Graph Cut algorithm [46] is used to solve the ‘ “Min-
Cut/Max-Flow” problem [51] of the graph, resulting in a new
label for each vertex (region). The updated labels are used
for the next iteration. After the saliency inference process,
we obtain (binary) saliency maps for frames in x.

IV. EXPERIMENTAL SETTINGS

A. Benchmark Datasets

We evaluated the performance of our method on three
public benchmark datasets: 10-Clips dataset [52], Seg-
Track2 dataset [53], and DAVIS dataset [54].

The 10-Clips dataset [52] has ten video sequences, each
of which contains a single salient object. Each sequence in the
dataset has the spatial resolution of 352 × 288 and consists of
about 75 frames.

The SegTrack2 dataset [53] contains 14 video sequences
and is originally designed for video object segmentation.
A half of the videos in this dataset have multiple salient
objects. This dataset is challenging in that it has background-
foreground color similarity, fast motion, and complex shape
deformation. Sequences in the dataset consist of about
76 frames with various resolutions.

The DAVIS dataset [54] consists of 50 high quality 854 ×
480 spatial resolution and Full HD 1080p video sequences
with about 70 frames per video, each of which has one single
salient object or two spatially connected objects either with
low contrast or overlapping with image boundary. This is
also a challenging dataset because of frequent occurrences of
occlusions, motion blur, and appearance changes. In this work,
we used only 854 × 480 resolution video sequences.

All the datasets contain manually annotated pixel-wise
ground-truth for every frame.

B. Evaluation Criteria

We evaluated the performance using Precision-Recall Curve
(PRC), F-measure [55], and Mean Absolute Error (MAE).

The first two evaluation metrics are computed based on
the overlapping areas between obtained results and provided
ground-truth. Using a fixed threshold between 0 and 255, pairs
of (Precision, Recall) scores are computed and then com-
bined to form a PRC. F-measure is a balanced measurement
between Precision and Recall as follows:

Fβ =
(
1 + β2

)
Precision × Recall

β2 × Precision + Recall
. (10)

We remark that we set β2 = 0.3 for F-measure, as suggested
by Achanta et al. [55] so that precision is weighted more
heavily.

For a given threshold, we binarize the saliency map to
compute Precision and Recall at each frame in a video and
then take the average over frames in the video. After that,
the mean of the averages over the videos in a dataset is
computed. F-measure is computed from the final precision and
recall. When binarizing results for the comparison with the
ground truth, we used F-Adap [56], which uses an adaptive
threshold θ = μ+η where μ and η are the mean value and the
standard deviation of the saliency scores of the obtained map,
and F-Max [57], which describes the maximum of F-measure
scores for different thresholds from 0 to 255.

MAE, on the other hand, is the average over the frame of
pixel-wise absolute differences between the ground truth GT
and obtained saliency map SM:

MAE = 1

W · H

W∑

x=1

H∑

y=1

‖SM (x, y)− GT (x, y)‖, (11)

where W and H are the width and the height of the video
frame. We note that MAE is also computed from the mean
average value of the dataset in the same way as F-measure.

C. Implementation Details

We implemented region-based CNN, block-based CNN, and
F-DNN in C/C++ using Caffe [58], and we implemented the
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Fig. 5. Visual comparison of our method against the state-of-the-art methods. From top-left to bottom-right, original video frame and ground-truth are
followed by outputs obtained using our method (STCRF), LC [21],LD [10], LGFOGR [22], LRSD [24], RST [6], SAG [23], SEG [20], STS [7], DCL [15],
DHS [16], DS [28], DSS [18], ELD [17], MDF [25], and RFCN [26], in this order. Our method surrounded with red rectangles achieves the best results.

other parts in Matlab. All experiments were conducted on a
PC with a Core i7 3.6GHz processor, 32GB of RAM, and

GTX 1080 GPU. We remark that the region-based CNN and
the block-based CNN were used without any fine-tuning.
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Fig. 6. Quantitative comparison of precision-recall curve with state-of-the-art methods under different thresholds. Our method is denoted by STCRF (thick
blue). (a) 10-Clips Dataset. (b) SegTrack2 Dataset. (c) DAVIS Dataset

TABLE II

NUMBER OF VIDEOS USED IN OUR EXPERIMENTS

To segment a video, we follow [35] as described above.
We set the number of initial superpixels at each frame as
{100, 200, 300, 400} to have four scale levels. The other
required parameters are set similarly to [35]. For parame-
ters in STCRF, we empirically set θ = (θu, θbs , θbt ) =
(50, 0.05, 1000). All these parameters are fixed throughout
experiments.

D. Training F-DNN for Foreground Probability Prediction

In training our F-DNN (see Section III-C.2), we took an
approach where we use all three datasets together rather than
training our F-DNN for each dataset. This is because each
dataset is too small to train a reliable model. Our approach
also enables the trained model not to over-fit to a specific
dataset.

From each video dataset except for the DAVIS dataset,
we chose randomly 60% (in number) of videos and mixed
them into a larger dataset for training while the remaining
videos were used for testing each dataset (cf. Table II). For
the DAVIS dataset, we used the training set and the testing set
as in the DAVIS Benchmark [54].3 We thus used 44 videos
for training.

The model was fine-tuned from the network proposed
in [41] using randomly initialized weights for new layers.
We trained the network for 300k iterations, using the Stochas-
tic Gradient Descent (SGD) optimization [59] with a moment
β = 0.9 and a weight decay of 0.005. The size of each mini-
batch is set 500. A base learning rate was initially set to 0.001
and divided by 10 at every 50k iterations.

V. EXPERIMENTAL RESULTS

A. Comparison With the State-of-the-Arts

We compared the performance of our method (denoted
by STCRF) with several state-of-the-art methods for salient

3http://davischallenge.org/browse.html

TABLE III

COMPARED STATE-OF-THE-ART METHODS AND CLASSIFICATION

object detection such as LC [21], LD [10], LGFOGR [22],
LRSD [24], RST [6], SAG [23], SEG [20], STS [7], DCL [15],
DHS [16], DS [28], DSS [18], ELD [17], MDF [25], and
RFCN [26]. Compared methods are classified in Table III.
We remark that we run their original codes provided by
the authors with the recommended parameter settings for
obtaining results. We also note that we applied the methods
developed for the still image to videos frame-by-frame.

Figure 5 shows examples of obtained results. Qualitative
evaluation confirms that our method produces the best results
on each dataset. Our method can handle complex foreground
and background with different details, giving accurate and
uniform saliency assignment. In particular, object boundaries
are clearly kept with less noise, compared with the other
methods.

To quantitatively evaluate the obtained results, we first
computed PRC and F-measure curves, which are shown
in Figs. 6 and 7.

It can be seen that our method achieves the highest precision
in almost the entire recall ranges on all the datasets. Especially
on the two most challenging datasets (i.e., SegTrack2 and
DAVIS), the performance gains of our method against the other
methods are more remarkable (results with higher recall values
are less important because achieving higher recall values is
easy). When compared with the second best method, i.e., DHS,
we see that (1) both the methods have comparable results on
10-Clips dataset, that (2) our method is significantly better than
DHS on SegTrack2 dataset, and that (3) on DAVIS dataset,
the precision of our method is larger than that of DHS when
recall values are small (higher binarization thresholds) while
it is smaller for large recall values (lower binarization thresh-
olds). Salient object detection at higher thresholds is more
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Fig. 7. Quantitative comparison of F-measure with state-of-the-art methods under different thresholds. Our method is denoted by STCRF (thick blue). (a)
10-Clips Dataset. (b) SegTrack2 Dataset. (c) DAVIS Dataset.

TABLE IV

THE WALL-CLOCK TIME AVERAGE FOR EACH FRAME

practical and effective than that at lower thresholds because
with low thresholds, more pixels are segmented regardless of
salient objects or background.

F-measure indicates that our method significantly out-
performs the other methods at every threshold on all the
datasets. Since the 10-Clips dataset is easiest among the three
datasets, any methods can achieve good results while the other
two datasets are challenging, meaning that the effectiveness
of methods becomes discriminative. Indeed, compared with
the second best method (DHS), our method is comparable
on the 10-Clips dataset and significantly better on the other
datasets.

Table VI illustrates the evaluations in terms of F-Adap,
F-Max, and MAE. Our proposed method achieves the best
performance under all the metrics on all the datasets. In
particular, the outperformance of our method even against
the second best method (DHS) is significant on SegTrack2 and
DAVIS datasets.

B. Computational Efficiency

We further evaluated the computational time of all the meth-
ods. We compared the running-time average of our method
with that of the other methods. The wall-clock time average

TABLE V

THE WALL-CLOCK TIME AVERAGE OF EACH STEP FOR EACH FRAME

IN THE PROPOSED METHOD. BOTTLENECKS ARE SHOWN IN RED.
(THE LOCAL FEATURE EXTRACTION STREAM AND THE GLOBAL

FEATURE EXTRACTION STREAM RUN IN PARALLEL)

for each frame in our method and the compared methods
is given in Table IV. Our methods are denoted by STCRF
for the pipeline without counting optical flow computation
and video segmentation, and by STCRF-full for the full
pipeline. We note that all videos were resized to the resolution
of 352 × 288 for the fair comparison. Performances of all
the methods are compared based on the implementations in
C/C++ and Matlab. We classify all the methods into three
categories: Matlab-region-based methods, Matlab-pixel-based
methods, and C/C++ based methods.

Since it is obvious that codes implemented in C/C++ run
faster than those in Matlab, we cannot directly compare the
run-time of all the methods. However, we see that our method
runs in the competitive speed with the others. Indeed, our
method is fastest among the Matlab-region-based methods.
We remark that Matlab-region-based methods run more slowly
than Matlab-pixel-based ones because treating regions individ-
ually in a sequential manner and then integrating results are
time-consuming.

It can be seen in Table IV that in our method, the time
required for computing optical flow and video segmentation
is a bottleneck: it takes 5.704 (=10.300 − 4.596) seconds
per frame. To identify bottleneck steps in our pipeline,
we broke down running-time into individual steps in our
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TABLE VI

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS, USING F-MEASURE (F-ADAP AND F-MAX) (HIGHER IS BETTER) AND MEAN
ABSOLUTE ERRORS (MAE) (SMALLER IS BETTER). THE BEST AND THE SECOND BEST RESULTS ARE SHOWN IN BLUE AND GREEN,

RESPECTIVELY. OUR METHOD (STCRF) MARKED IN BOLD IS FOLLOWED BY METHODS FOR VIDEOS AND THOSE FOR STILL IMAGES

TABLE VII

COMPARISON OF STD FEATURES AND LOCAL FEATURES. THE BEST RESULTS ARE SHOWN IN BLUE
(HIGHER IS BETTER FOR F-ADAP AND F-MAX, AND LOWER IS BETTER FOR MAE)

pipeline (see Table V). We note that in our pipeline, the step
of region-based feature extraction followed by local feature
computation, and the step of global feature extraction run in
parallel. Table V indicates that region-based feature extraction
and binary potential computation are also bottlenecks. Because
the bottleneck steps except for region-based feature extraction
are implemented in Matlab, re-implementing such steps in
C/C++ and using Cuda for parallel processing for regions
will improve the speed of our method. We note that speed-up
of the computational time for salient object detection is not
the scope of this paper.

C. Detailed Analysis of the Proposed Method

To demonstrate the effectiveness of utilizing local and global
features, utilizing spatiotemporal information in computing the
saliency map, and the effectiveness of multi-level analysis,
we performed experiments under controlled settings and com-
pared results.

1) Effectiveness of Combination of Local and Global Fea-
tures: To evaluate the effectiveness of combining local and
global features, we compared results using STD features
with those using local features alone, which is illustrated
in Table VII.

We see that the combination of local and global features
brings more gains than using only local features. This can be
explained as follows. Local features exploit the meaning of an
object in term of saliency but only in a local context, while

global features can model a global context in the whole video
block. Thus, STD features are more powerful. We remark that
we also present results using RGB features just to confirm that
the deep feature outperforms RGB features.

2) Effectiveness of Spatiotemporal Potential in STCRF:
To demonstrate the effectiveness of utilizing spatiotemporal
information into the energy function in STRCF, we per-
formed experiments under four different controlled settings.
We changed the binary term: setting θbt = 0 to use spatial
information alone (denoted by SP), setting θbs = 0 to use
temporal information alone (denoted by TP), and setting θbt =
θbs = 0 to use the unary term alone (denoted by U). We
compared the proposed (complete) method (denoted by STP)
with these three baseline methods (cf. Table VIII).

Table VIII indicates that STP exhibits the best performance
on all the metrics on the three datasets. We see that using
both spatial and temporal information effectively works and
brings more gains than using spatial information alone or using
temporal information alone. This suggests that our method
captures spatial contexts in a frame and temporal information
over frames to produce saliency maps.

3) Effectiveness of Multiple-Scale Approach: To demon-
strate the effectiveness of our multiple-scale approach,
we compared methods that use different numbers of scale
levels in computing the saliency map. More precisely, starting
with only the coarsest scale level (level 1), we fused finer
levels (levels 2, 3, 4) one by one to compute the saliency
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TABLE VIII

COMPARISON OF DIFFERENT POTENTIALS IN STCRF. THE BEST RESULTS ARE SHOWN IN BLUE (HIGHER IS BETTER
FOR F-ADAP AND F-MAX, AND LOWER IS BETTER FOR MAE). OUR COMPLETE METHOD ARE MARKED IN BOLD

TABLE IX

COMPARISON OF DIFFERENT NUMBERS OF SCALE LEVELS IN PROCESSING. THE BEST RESULTS ARE SHOWN

IN BLUE (HIGHER IS BETTER FOR F-ADAP AND F-MAX, AND LOWER IS BETTER FOR MAE).
OUR COMPLETE METHOD IS MARKED IN BOLD

TABLE X

COMPARISON UNDER DIFFERENT LENGTHS OF THE VIDEO BLOCK

map. The methods are denoted by 1-level, 2-levels, 3-levels,
and 4-levels (our complete method).

The results are illustrated in Table IX. Table IX shows
that the multiple-scale approach outperforms the single-scale
approach. It also indicates that using more scales produces bet-
ter results. Indeed, as the number of scales in the saliency com-
putation increases, we have more accurate results. Table IX
also shows that employing 4 scale levels seems to be suf-
ficient because 3-levels and 4-levels have almost similar
performances.

4) Effective Length of Video Block: We investigated the
effectiveness of the size of the video block to feed to
STCRF by changing the window size from 1 to 64 by twice:
1, 2, 22, . . . , 26 (cf. Table X).

Table X shows that as the window size becomes larger,
we have more accurate results. However, the improvement
in accuracy is saturated around a size of 16. On the other
hand, the processing time for a larger window size is slower
because the size of the graphical model becomes larger. To bal-
ance the performance between accuracy and the processing
time, we observe that the appropriate window size of the video
block is 16.

VI. APPLICATION TO VIDEO OBJECT SEGMENTATION

Video object segmentation (VOS) is a binary labeling prob-
lem aiming to separate foreground objects from the back-
ground of a video [54]. On the other hand, salient object

detection (SOD) aims to detect and segment salient objects
in natural scenes. Although VOS and SOD are different tasks,
SOD methods are beneficial for VOS when salient objects are
foreground objects in scenes. In this section, we demonstrate
the applicability of our proposed method to VOS.

Figure 8 illustrates the framework for VOS using the
saliency map. In one pass, the output saliency map is binarized
using the adaptive threshold mentioned in Section IV-B to
obtain the foreground mask. In the other pass, we imple-
mented the object segmentation method based on bound-
ary snapping [60]. We first detect contours of foreground
objects using CEDN [67] and then apply the combinatorial
grouping method [68] to compute the Ultrametric Contour
Map (UCM) [68], which presents hierarchical segmentation.
Superpixels are aligned by binarizing the UCM using a thresh-
old τ = 0.3. From the foreground mask and superpixels,
we perform the majority voting to segment foreground objects.

VOS methods are classified into two groups: one that is
requiring the initial object mask at the first frame, and the
other that is not. In the DAVIS Benchmark [54], the for-
mer group is called semi-supervised while the latter one is
unsupervised. Since an initial object mask becomes a strong
prior for accurately segmenting objects in subsequent frames,
we chose most recent unsupervised methods for the fair
comparison. We compared our method with the state-of-the-
art saliency method (DHS [16]), and most recent unsupervised
VOS methods: ACO [61], CVOS [62], FST [43], KEY [63],
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Fig. 8. Boundary snapping [60] based video object segmentation framework using the saliency map.

Fig. 9. Visual comparison of our method against the state-of-the-art video object segmentation methods. From left to right, original video frame and
ground-truth are followed by outputs obtained using our method (STCRF*), DHS* [16], ACO [61], CVOS [62], FST [43], KEY [63], MSG [64], NLC [65],
and TRC [66], in this order. Our STCRF surrounded with red rectangles achieves the best results.

TABLE XI

QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART VIDEO OBJECT SEGMENTATION METHODS ON THE DAVIS DATASET, USING REGION
SIMILARITY, CONTOUR ACCURACY, AND OVERALL PERFORMANCE METRICS. THE BEST THREE RESULTS ARE SHOWN IN BLUE,

GREEN, AND RED, RESPECTIVELY. OUR METHOD, DENOTED BY STCRF*, IS MARKED IN BOLD

MSG [64], NLC [65], and TRC [66]. We remark that two SOD
methods (i.e., our method and DHS) segment objects using the
framework in Fig. 8. We denote their by STCRF* and DHS*
individually.

We tested all the methods on the DAVIS dataset [54],
the newest dataset for VOS, and evaluated results using
measures in the 2017 DAVIS Challenge [69] (i.e., region
similarity J , contour accuracy F , and overall performance
O). For a given error measure, we computed three different
statistics as in [54]. They are the mean error, the object
recall (measuring the fraction of sequences scoring higher
than a threshold τ = 0.5), and the decay (quantifying the
performance loss (or gain) over time). Note that we used the

results in the DAVIS Benchmark [54]4 for the compared state-
of-the-art VOS techniques. We also note that we run the source
code of ACO [61], which is not mentioned in the DAVIS
Benchmark, provided by the authors with the recommended
parameter settings.

Figure 9 shows some examples of the obtained results.
The quantitative comparison of these methods is shown
in Table XI, indicating that our proposed method STCRF*
exhibits the best performance on all the metrics at all the
statistics. STCRF* achieves 0.714 for J (Mean), 0.674 for
F(Mean), and 0.694 for O(Mean), while the best VOS

4http://davischallenge.org/soa_compare.html
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methods achieve 0.558 (for FST [43]), 0.523 (for NLC [65]),
and 0.537 (for NLC [65]), respectively. STCRF* outperforms
the compared VOS methods by a large margin on all the
metrics. We can thus conclude that our proposed SOD method
works even for VOS. We note that DHS* is second best.

VII. CONCLUSION

Different from the still image, the video has temporal
information and how to incorporate temporal information as
effectively as possible is the essential issue for dealing with
the video. This paper focused on detecting salient objects
from a video and proposed a framework using STD features
together with STCRF. Our method takes into account temporal
information in a video as much as possible in different
ways, namely, feature extraction and saliency computation.
Our proposed STD feature utilizes local and global contexts
in both spatial and temporal domains. The proposed STCRF is
capable to capture temporal consistency of regions over frames
and spatial relationship between regions.

Our experiments show that the proposed method signifi-
cantly outperforms state-of-the-art methods on publicly avail-
able datasets. We also applied our method to the video object
segmentation task, showing that our method outperforms exist-
ing unsupervised VOS methods on the DAVIS dataset.

Visual saliency is also used for estimating human gaze
[70]–[72]. For salient object detection, object boundaries
should be kept as accurately as possible while for human gaze
estimation, they are not. Rather, gaze fixation point should be
precisely identified and the area nearby the fixation point had
better be blurred to present saliency using a Gaussian kernel,
for example. Applying our method directly to gaze estimation
is thus not suitable. However, the idea of combining local and
global features will be interesting even to gaze estimation.
Adapting our proposed method to gaze estimation in videos
is left for future work.
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