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Abstract. Quadratic surfaces gain more and more attention in the geo-
metric algebra community and some frameworks to represent, transform,
and intersect these quadratic surfaces have been proposed. To the best of
our knowledge, however, no framework has yet proposed that supports
all the operations required to completely handle these surfaces. Some
existing frameworks do not allow the construction of quadratic surfaces
from control points while some do not allow to transform these quadratic
surfaces. Although a framework does not exist that covers all the required
operations, if we consider all already proposed frameworks together, then
all the operations over quadratic surfaces are covered there. This paper
presents an approach that transversely uses different frameworks for cov-
ering all the operations on quadratic surfaces. We employ a framework
to represent any quadratic surfaces either using control points or the
coefficients of its implicit form and then map the representation into
another framework so that we can transform them and compute their
intersection. Our approach also allows us to easily extract some geomet-
ric properties.

Keywords: Geometric algebra · Quadratic surfaces ·
Conformal geometric algebras

1 Introduction

Geometric algebra provides convenient and intuitive tools to represent, trans-
form, and intersect geometric objects. Deeply explored by physicists, it has been
used in quantum mechanics and electromagnetism [12] as well as in classical
mechanics [13]. Geometric algebra has also found some interesting applications
in geographic data manipulations [16,21]. Among them, geometric algebra is
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used within the computer graphics community. More precisely, it is used not
only in basis geometric primitive manipulations [20] but also in complex illumi-
nation processes as in [17] where spherical harmonics are substituted by geomet-
ric algebra entities. For image data analysis, on the other hand, we can find the
usefulness of geometric algebra in mathematical morphology [6] and in neural
networking [3,14]. In the geometric algebra community, quadratic surfaces gain
more and more attention, and some frameworks to represent, transform, and
intersect these quadratic surfaces have been proposed.

There exist three main approaches to deal with quadratic surfaces in geomet-
ric algebra. The first one, introduced in [9], is called double conformal geometric
algebra (DCGA), G8,2. It is capable of representing quadratic surfaces from the
coefficients of their implicit form. The second one is double projective geometric
algebra (DPGA), G4,4, whose definition was firstly introduced in [11] and has
been further developed in [8]. This approach is based on a duplication of R4 and
it represents quadratic surfaces from the coefficients of their implicit form, as
bivectors. However, it cannot construct quadratic surfaces from control points.
The third one was introduced in [2] and is denoted as quadric conformal geomet-
ric algebra (QCGA), G9,6. QCGA allows to define any general quadratic surface
from 9 control points, and to represent objects by only 1 or 2-vectors. QCGA is
capable of constructing quadratic surfaces either using control points or implicit
equations as 1-vector. QCGA also allows to efficiently intersect quadratic sur-
faces. However, it does not yet allow all geometric transformations over quadratic
surfaces. In order to enhance the usefulness of geometric algebra for the geom-
etry and the computer graphics communities, a new framework that allows to
represent and manipulate quadratic surfaces has to be developed. It is the main
purpose of this paper.

1.1 Contributions

We propose a new approach that transversely uses the three above mentioned
geometric algebra models to compensate drawbacks of each model and show
that it is possible to not only represent quadratic surfaces using either control
points or implicit coefficients but also transform these quadratic surfaces using
versors. More precisely, we employ a model that allows us to represent quadratic
surfaces, and convert them into another model that allows us to transform them
using versors, and then convert the result back into the original model. With
our approach, the tangent planes to a quadratic surfaces and intersection of
quadratic surfaces can be computed.

1.2 Notations

Following the state-of-the-art usage in [5] and [19], upper-case bold letters denote
blades (blade A) whose grade is higher than 1. Multivectors and k-vectors are
denoted with upper-case non-bold letters (multivector A). Lower-case bold let-
ters refer to vectors and lower-case non-bold to multivector coordinates. The
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vector space dimension is denoted by 2d, where d is the number of basis blades ei

of grade 1.

2 Geometric Algebra Models for Quadratic Surfaces

2.1 Measure for Evaluating Complexity of Models

This paper focuses on the most common operations on quadratic surfaces and
their intersections, and aims at determining the most efficient geometric algebra
model for each operation. These operations can be related to computer graphics
or more general geometry and will mainly consist in:

– checking whether a point lies in a quadratic surface,
– intersecting quadratic surface and line,
– computing the normal vector (and the tangent plane) of a surface at a given

point.

Indeed, these operations are precisely the minimal tools required to set up a ray-
tracer [10]. According to these targeted operations, evaluating their complexity
mostly consists in the estimation of the number of operations required for both
the outer product of multivectors and the inner product between vectors and
bivectors.

First, let us consider the outer product between two homogeneous multivec-
tors whose numbers of components are u and v respectively, u, v ∈ N. We then
assume that an upper bound to the number of required products is at most uv
products of scalars, as shown in the definition of the outer product [15].

Second, according to the target operations, we need to use the formula
for inner products between 1-vector and 2-vector as well as the inner prod-
uct between two 1-vectors. Considering that the first multivector has u non-zero
components, and the second has v non-zero components, then the inner product
between two 1-vectors will result in uv products. The inner product between
1-vectors and 2-vectors, on the other hand, requires two inner products for each
pair of components of the two multivectors, that is to say 2uv products.

There exist three main geometric algebra frameworks to manipulate gen-
eral quadratic surfaces: DCGA of G8,2 [9], DPGA of G4,4 [8,18], and QGCA of
G9,6 [2]. The following sections present their specificities as well as their com-
plexity for the targeted operations.

2.2 DCGA of G8,2

DCGA was presented by Hitzer and Easter [9] and aims at having entities rep-
resenting both quartic surfaces and quadratic surfaces. In more details, DCGA
of G8,2 is defined over a 10-dimensional vector space. The base vectors of the
space are basically divided into two groups: {eo1, e1, e2, e3, e∞1}, corresponding
to the CGA vectors, and a copy of this basis {eo2, e4, e5, e6, e∞2}. A point of
DCGA whose Euclidean coordinates are (x, y, z) is defined as the outer product
of two CGA points with coordinates (x, y, z).
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Quadratic Surfaces: A general quadratic surface merely consists of defining
some operators that extract the components of x. A general quadratic surface is
defined as:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0. (1)

In DCGA, 10 extraction operators {Tx2 ,Ty2 ,Tz2 ,Txy,Txz,Tyz,Tx,Ty,
Tz,T1} are defined (see [9]) such that the inner product of these operators
and a point results in Eq. 1. DCGA not only supports the definition of general
quadratic surfaces but also some quartic surfaces like Torus, cyclides (Dupin
cyclides, etc.).

Complexity of Some Major Operations: Let us first evaluate the compu-
tational cost of checking whether a point is on a quadratic surface using the
measure given in Sect. 2.1. Qdcga has 10 basis bivector components in total. For
each basis bivector, at most 3 inner products (bivector ∧ bivector) are required.
The number of point components is 25. Thus, the product Qdcga · X requires
25 × 3 × 10 = 750 products.

Now we detail the cost of the computation of the tangent plane to a quadratic
surface, defined in [9] as:

Π = (n1 + de∞1) ∧ (n2 + de∞2). (2)

The normal vector is defined as the commutator product of some differential
operators and the quadratic surface resulting in a 7-component bivector. Each
inner product with X then has the cost of 7 × 25 = 175 products. This latter
computation is repeated for each axis; thus, this results in 175 × 3 = 525 prod-
ucts. The computation of the distance d, on the other hand, consists of merely
3 inner products. Both operands in this equation are 4-components 1-vector.
Thus, the computational cost of the outer product is 4 × 4 = 16. Hence, the
total cost of the computation of the tangent plane is 525 + 16 = 541 products.
The third operation is the intersection between a quadratic surface and a line.
This computation is, unfortunately, not defined in DCGA.

2.3 DPGA of G4,4

DPGA was adapted from the approach of Parkin [18] in 2012 and firstly intro-
duced in 2015 by Goldman and Mann [11] and further developed by Du and
Goldman and Mann [8]. DPGA is defined over a 8-dimensional vector space.
Similarly to DCGA, the base vectors of the space are divided into two groups:
{w0,w1,w2,w3}, corresponding to the projective geometric algebra vectors,
and a copy of this basis {w∗

0,w
∗
1,w

∗
2,w

∗
3} such that wiw∗

i = 0.5 + wi ∧ w∗
i ,

∀i ∈ {0, 1, 2, 3}. In DPGA, the entity representing a point whose Euclidean
coordinates are (x, y, z) has two definitions, namely, primal and dual. Both defi-
nitions are the base to construct quadratic surfaces by means of the sandwiching
product. The definitions of the points are:

p = xw0 + yw1 + zw2 + ww3, p∗ = xw∗
0 + yw∗

1 + zw∗
2 + ww∗

3. (3)
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Note that the dual definition denotes the fact that

wi · w∗
j =

1
2
δi,j (∀i, j = 0, · · · 3), (4)

where δi,j = 1 if i = j, 0 otherwise. This corresponds to the condition of the
dual stated in Sect. 11 of [4].

Quadratic Surfaces: A quadratic surface in DPGA is the bivector Qdpga

defined as follows:

Qdpga = 4aw∗
0 ∧ w0 + 4bw∗

1 ∧ w1 + 4cw∗
2 ∧ w2 + 4jw∗

3 ∧ w3

+2d(w∗
0 ∧ w1 + w∗

1 ∧ w0) + 2e(w∗
0 ∧ w2 + w∗

2 ∧ w0)
+2f(w∗

1 ∧ w2 + w∗
2 ∧ w1) + 2g(w∗

0 ∧ w3 + w∗
3 ∧ w0)

+2h(w∗
1 ∧ w3 + w∗

3 ∧ w1) + 2i(w∗
2 ∧ w3 + w∗

3 ∧ w2).

(5)

A point (x, y, z) is in the quadratic surface Qdpga if and only if

p · Qdpga · p∗ = 0. (6)

Table 1 summarises the computations involved in three main operations used for
computer graphics.

Table 1. Formulas of DPGA involved in the main computations for computer graphics

Feature DPGA

Point is on a quadratic surface p · Qdpga · p∗

Tangent plane Qdpga · p∗

Quadratic surface-line intersection (L∗ ∧ Qdpga ∧ L) · I

Complexity of Some Major Operations: Qdpga has a total of 16 basis bivec-
tor components. For each basis bivector, 2 inner products are required. Thus,
the first product p ·Qdpga requires 4×2×16 = 128 inner products. As previously
seen, the resulting entity is a vector with 4 components. Hence, the second inner
product requires 4 × 4 = 16 products. This results in 144 products in total.

Let us now evaluate the cost of the intersection between a quadratic surface
Qdpga and a line L and L∗. The line L∗ is obtained by the outer product of
two points x1 and x2 whose number of components is 4. Thus, a line L has 6
components. The number of components of the quadratic surface is 16 and the
number of components of the line is 6. Then, the computational cost of the outer
product L∗∧Qdpga is 6×16 = 96 outer products. The result is a 4-vector and the
resulting entity has 16 components. Furthermore, the line l has 6 components.
Hence, the cost of the final outer product is 16 × 6 = 96 outer products. The
total operation cost is thus 96 + 96 = 192 products.

Considering the fact that the number of components of p∗ is 4 and the number
of components of Qdpga is 16, the computational cost of the computation of the
tangent plane is 16 × 4 = 64 products.
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2.4 QCGA of G9,6

QCGA was presented by Breuils et al. [2]. The base vectors are composed of
Euclidean basis vectors and the 12 null basis vectors {eoi, e∞i}, i = 1 · · · 6.
Firstly, a point is defined as the 12-component vector:

x = xε + 1
2 (x2e∞1 +y2e∞2 +z2e∞3)+xye∞4 +xze∞5 +yze∞6 +eo1 +eo2 +eo3.

(7)
Secondly, the definition of a quadratic surface in QCGA is a 1-vector, called Q∗,
which has also a total of 12 basis vector components as:

q∗ = −(
2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6

)

+
(
ge1 + he2 + ie3

) − j
3
(e∞1 + e∞2 + e∞3). (8)

Let us evaluate the computational cost of checking whether a point is on a
quadratic surface. Furthermore, the number of point component is 12. Thus, the
product x · Q∗ requires at most 12 × 12 = 144 products.

The computation of the tangent plane is performed by firstly computing the
normal vector. This computation requires the inner product between a vector
with 12 components and another vector with 4 components. This is repeated for
each Euclidean basis vector; thus, the computation of the normal vector requires
3 × 4 × 12 = 144 inner products.

Then, the tangent plane is computed using the normal vector as follows:

π∗ = nε +
1
3
(
e∞1 + e∞2 + e∞3

)√−2(eo1 + eo2 + eo3) · x. (9)

This computation requires the computation of an inner product of a vector with
3 components (e1, e2, e3) with a 12 component-vector. This means 12 × 3 = 36
products. Thus, the total number of inner products required for computing the
tangent plane is 144 + 36 = 180 products.

The final computational feature is the quadratic surface-line intersection. In
QCGA, this simply consists of computing the outer product:

C∗ = Q∗ ∧ L∗ (10)

The number of components of Q∗ is 12 as already seen. In QCGA, a line with
the 6 Plücker coefficients is defined as:

L∗ = 3mIε + (e∞3 + e∞2 + e∞1) ∧ n Iε. (11)

The number of components of both m and n is 3. The outer product (e∞3 +
e∞2 + e∞1) ∧ n Iε yields a copy of the 3 components of n along e∞1, e∞2, e∞3

basis vectors. Thus, the number of components of L∗ is 3 × 3 + 3 = 12. The cost
of the outer product between Q∗ and L∗ is thus 12 × 12 = 144 products.

Table 2 summarises the complexity of DPGA, DCGA, and QCGA for com-
puting features. We remark that the computation of the tangent plane is more
efficient if we use DPGA whereas the intersection between a quadratic surface
and a line requires less computations if we use QCGA. Furthermore, geometric
transformations are not yet defined in QCGA.
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Table 2. Numbers of operations required for computation in DPGA, DCGA, and
QCGA.

Feature DPGA DCGA QCGA

Point is on a quadratic surface 144 750 144

Tangent plane 64 541 180

Quadratic surface-line intersection 192 − 144

3 Mapping Between the Three Models for Quadratic
Surfaces

As one of practical applications, we consider constructing a quadratic surface
from 9 points then rotating this quadratic surface. To the best of our knowledge,
QCGA is the only approach that can construct a quadratic surface from 9 points.
But QCGA does not yet support all the transformations. Furthermore, as seen
above, it is more computationally efficient to perform the quadratic surface-line
intersection in the QCGA model whereas the computation of the tangent plane
or the normal vector at a point of quadratic surface is more efficient in the
DPGA model. Moreover, if we represent both a Dupin cyclide and a quadratic
surface in a same way as [7], then we need DCGA. The above observation is our
motivation for defining new operators that convert quadratic surfaces between
the three models, see Fig. 1.

Fig. 1. Encapsulation of the three models of points and quadratic surfaces.

The key idea is that for any entities representing a quadratic surface in
QCGA, DCGA, and DPGA, we convert the entity such that all the coefficients
of the quadratic surface:

ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + iz + j = 0 (12)

can be extracted easily.

3.1 DCGA Reciprocal Operators

We start by defining reciprocal operators for DCGA:

Tx2
= e1 ∧ e4, Ty2

= e2 ∧ e5, Tz2
= e3 ∧ e6, T1 = eo1 ∧ eo2, (13)
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along with the 6 following:

Tx =
(
e1 ∧ eo2 + eo1 ∧ e4

)
, Ty =

(
e2 ∧ eo2 + eo1 ∧ e5

)
,

Tz =
(
e3 ∧ eo2 + eo1 ∧ e6

)
, Txy =

(
e1 ∧ e5 + e2 ∧ e4

)
,

Txz =
(
e1 ∧ e6 + e3 ∧ e4

)
, Tyz =

(
e3 ∧ e5 + e2 ∧ e6

)
.

(14)

Given the DCGA extraction operators presented in Sect. 2.2, our defined
reciprocal operators verify the following properties:

Tx2 · Tx2 = 1, Ty2 · Ty2 = 1, Tz2 · Tz2 = 1, Txy · Txy = 1, Txz · Txz = 1,
Tyz · Tyz = 1, Tx · Tx = 1, Ty · Ty = 1, Tz · Tz = 1, T1 · T1 = 1.

(15)
Then, given Qdcga, the entity representing a quadratic surface of DCGA, any
coefficients of this quadratic surface (12) can be extracted as:

Tx2 · Qdcga = a, Ty2 · Qdcga = b, Tz2 · Qdcga = c, Txy · Qdcga = d,
Txz · Qdcga = e,Tyz · Qdcga = f, Tx · Qdcga = g, Ty · Qdcga = h,
Tz · Qdcga = i, T1 · Qdcga = j.

(16)

The construction of a DCGA point is explained in Sect. 2.2 and defined in [9].
The reciprocal operation requires the computation of the normalized point X̂ of
DCGA that we define as:

X̂ = − X
X · (e∞1 ∧ e∞2)

. (17)

The extraction of the Euclidean components (x, y, z) of a normalized point X̂ of
DCGA can be performed as follows:

x = X̂ · (e1 ∧ e∞2), y = X̂ · (e2 ∧ e∞2), z = X̂ · (e3 ∧ e∞2). (18)

3.2 DPGA Reciprocal Operators

Let us denote by W reciprocal operators for DPGA:

Wx2
= w∗

0 ∧ w0, Wy2
= w∗

1 ∧ w1, Wz2
= w∗

2 ∧ w2, Wxy= 2w∗
1 ∧ w0,

Wxz= 2w∗
2 ∧ w0, Wyz= 2w∗

2 ∧ w1, Wx = 2w∗
3 ∧ w0, Wy = 2w∗

3 ∧ w1,
Wz = 2w∗

3 ∧ w2, W1 = w∗
3 ∧ w3.

(19)

Given Qdpga, the entity representing a quadratic surface of DPGA, any coeffi-
cients of this quadratic surface (12) can be extracted as:

Wx2 · Qdpga= a, Wy2 · Qdpga= b, Wz2 · Qdpga= c, Wxy · Qdpga= d,
Wxz · Qdpga= e, Wyz · Qdpga= f, Wx · Qdpga = g, Wy · Qdpga = h,
Wz · Qdpga = i, W1 · Qdpga = j.

(20)

As in projective geometry, the construction of a finite point of DPGA requires
to add a homogeneous component 1 to the Euclidean components. The nor-
malization of a point merely consists of dividing all the components by its w3

components (or w∗
3 for the dual form) if it is a non-zero component.
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3.3 QCGA Reciprocal Operators

For QCGA, quadratic surfaces can be represented using either the primal form
or the dual form. We define the reciprocal operators for the dual form. When
considering the primal form, we have only to compute the dual of the primal
and then apply the following reciprocal operators:

Qx2
=

1
2
eo1, Qy2

=
1
2
eo2, Qz2

=
1
2
eo3, Qxy = eo4,

Qxz = eo5, Qyz = eo6, Qx = e1, Qy = e2, (21)
Qz = e3, Q1 = e∞1 + e∞2 + e∞3.

Given a general quadratic surface Q∗ whose coefficients are (a,b, c, · · · , j),
the properties of these operators are as follows:

Qx2 · Q∗= a, Qy2 · Q∗= b, Qz2 · Q∗= c, Qxy · Q∗= d, Qxz · Q∗= e,
Qyz · Q∗= f, Qx · Q∗ = g, Qy · Q∗ = h, Qz · Q∗ = i, Q1 · Q∗ = j.

(22)

The reciprocal operation requires the computation of the normalized point x̂ of
QCGA, which is missing in [2].

Proposition 3.1. For a QCGA point x, the normalization is merely computed
through an averaging of eo1, eo2, eo3 components of eo component as:

− x
x · e∞

. (23)

Proof. A scale α on x acts the same way on all null basis vectors of x:

αx = αxε + 1
2α(x2e∞1 + y2we∞2 + z2e∞3) + xyαe∞4 + xzαe∞5 + yzαe∞6

+αeo1 + αeo2 + αeo3.
(24)

The metric of QCGA indicates (see [2]):

αx · e∞1 = −α, αx · e∞2 = −α, αx · e∞3 = −α. (25)

Thus, if α �= 0:

−3αx
αx · (e∞1 + e∞2 + e∞3)

· e∞1 = −−3αx
−3α

· e∞1

= x · e∞1 = −1.
(26)

A similar result is obtained with e∞2 and e∞3:

−3αx
αx · (e∞1 + e∞2 + e∞3)

· e∞2 = x · e∞2 = −1. (27)

−3αx
αx · (e∞1 + e∞2 + e∞3)

· e∞3 = x · e∞3 = −1. (28)
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Thus, we check that for any scaled points x1,x2:

x1

x1 · e∞
· x2

x2 · e∞
= −1

2
‖x1ε − x2ε‖2 . (29)

The extraction of the Euclidean components (x, y, z) of a normalized point x̂ of
QCGA can be performed as follows:

x = x̂ · e1, y = x̂ · e2, z = x̂ · e3. (30)

3.4 How to Choose the Right Model?

Given a geometric operation and this general framework, a question arises that
which model we should choose among QCGA, DPGA, and DCGA. To answer
this question, we merely consider two criteria, namely, (1) if the operation is
defined and (2) on which model it is the most computationally efficient. This is
illustrated in Tables 2 and 3.

Table 3. Geometric operations allowed in either QCGA, DPGA or DCGA, where
✓means possible and ✗ means not.

Opération DPGA DCGA QCGA

Quadratic surface from control
points

✗ ✗ ✓

Point ∈ quadratic surface ✓ ✓ ✓

Tangent plane ✓ ✓ ✓

Quadratic surface-line
intersection

✓ ✗ ✓

Quadratic surface-quadratic
surface intersection

✗ ✗ ✓

Transformations ✓ ✓ ✗

Quartic surfaces ✗ ✓ ✗

3.5 Example

We test our approach by defining an ellipsoid from 9 points using QCGA. Then
we rotate it using DPGA and back-convert the rotated ellipsoid into QCGA. In
terms of geometric algebra computations, first we compute the quadratic surface:

Q∗ = (x1 ∧ x2 ∧ · · · ∧ x9 ∧ I�
o )∗. (31)

Then, we apply the extraction operators of QCGA to convert the QCGA
quadratic surface to its corresponding DPGA quadratic surface.
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Qdpga =4(Qx2 · Q∗)w∗
0 ∧ w0 + 4(Qy2 · Q∗)w∗

1 ∧ w1 + 4(Qz2 · Q∗)w∗
2 ∧ w2

+4(Q1 · Q∗)w∗
3 ∧ w3 + 2(Qxy · Q∗)(w∗

0 ∧ w1 + w∗
1 ∧ w0)

+2(Qxz · Q∗)(w∗
0 ∧ w2 + w∗

2 ∧ w0) + 2(Qyz · Q∗)(w∗
1 ∧ w2 + w∗

2 ∧ w1)
+2(Qx · Q∗)(w∗

0 ∧ w3 + w∗
3 ∧ w0) + 2(Qy · Q∗)(w∗

1 ∧ w3 + w∗
3 ∧ w1)

+2(Qz · Q∗)(w∗
2 ∧ w3 + w∗

3 ∧ w2).
(32)

The rotation is now performed as follows:

Qdpga = RQdpgaR−1. (33)

The rotor R is defined as:

R = exp(
1
2
θwiw∗

j ), (34)

where i �= j. The final step is to convert the resulting quadratic surface back into
QCGA. It is merely computed using the QCGA extraction operators as follows:

Q∗ = −(
2(Wx2 · Qdpga)eo1 + 2(Wy2 · Qdpga)eo2 + 2(Wz2 · Qdpga)eo3

+ (Wxy · Qdpga)eo4 + (Wxz · Qdpga)eo5 + (Wyz · Qdpga)eo6

)

+
(
(Wx · Qdpga)e1 + (Wy · Qdpga)e2 + (Wz · Qdpga)e3

)

− (W1 · Qdpga)
3

(e∞1 + e∞2 + e∞3). (35)

Note that the program can be found in the plugin folder of the git repository
https://git.renater.fr/garamon.git.

4 Conclusion

In this paper, we focused on an approach to deal with quadratic surfaces. After
presenting the main geometric algebras to represent and manipulate quadratic
surfaces, we introduced an approach that transversely uses the main geometric
algebras. This approach unifies all the models of geometric algebra into one more
general approach that allows to represent and manipulate any quadratic surface
either using control points or from the coefficients of its implicit form. For the
following, we seek for a generalisation of this approach for the representation of
quadratic and cubic surfaces. A potential drawback of the proposed approach
is that the used algebras are all of high dimensions and, thus, are difficult to
implement efficiently. The algebra generator Garamon [1] allows such efficient
implementation and so, it will be interesting to compare the proposed approach
to the usual way to represent and manipulate quadratic surfaces.
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