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Abstract. We introduce the quadric conformal geometric algebra in-
side the algebra of R

9,6. In particular, this paper presents how three-
dimensional quadratic surfaces can be defined by the outer product of
conformal geometric algebra points in higher dimensions, or alterna-
tively by a linear combination of basis vectors with coefficients straight
from the implicit quadratic equation. These multivector expressions
code all types of quadratic surfaces in arbitrary scale, location, and
orientation. Furthermore, we investigate two types of definitions of axis
aligned quadric surfaces, from contact points and dually from linear
combinations of R9,6 basis vectors.

1. Introduction

Geometric algebra provides convenient and intuitive tools to represent, trans-
form, and intersect geometric objects. Deeply explored by physicists, it has
been used in quantum mechanics and electromagnetism [8,9] as well as in
classical mechanics [10]. Geometric algebra has also found interesting appli-
cations in geographic data manipulations [16,20]. Among them, geometric
algebra is used within the computer graphics community. More precisely, it
is used not only in basis geometric primitive manipulations [19] but also in
complex illumination processes as in [17] where spherical harmonics are sub-
stituted by geometric algebra entities. Finally, in data and image analysis,
we can find the usefulness of geometric algebra in mathematical morphol-
ogy [4] and in neural networking [3,12]. In the geometric algebra community,
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quadratic surfaces gain more and more attention and some frameworks have
been proposed in order to represent, transform, and intersect these quadratic
surfaces.

There exist three main approaches to deal with quadratic surfaces. The
first one, introduced in [6], is called double conformal geometric algebra
of G8,2. It is capable of representing quadratic surfaces from the coefficients of
their implicit form. The second one is double perspective geometric algebra of
G4,4 whose definition was firstly introduced in [7]. It has been further devel-
oped in [5]. This approach is based on a duplication of R3 and also represents
quadratic surfaces from the coefficients of their implicit form, as bivectors.
The third one was introduced in [2] and is denoted as quadric conformal
geometric algebra (QCGA). QCGA allows us to define general quadratic sur-
faces from nine control points, and to represent the objects in low dimensional
subspaces of the algebra. With slight modifications, QCGA is also capable of
constructing quadratic surfaces either using control points or implicit equa-
tions as 1-vector. QCGA also offers the possibility to transform quadratic
surfaces using versors for rotation, translation and scaling [13].

In order to enhance usefulness of QCGA for geometry and computer
graphics community, the QCGA framework must be further equipped with
convenient tools and handy notations. This is the main purpose of this paper.

All the examples and computations are based upon the efficient geomet-
ric algebra library generator Garamon [1]. The code of this library generator
is freely available online1.

The paper is organized as follows. Section 2 defines QCGA following
[2], and the modifications introduced in [13]. It also includes a concise set of
important algebraic relations in QCGA, handy for the computations in the
rest of this work. Section 3 defines the fundamental notion of point in QCGA
(identical to the one given in [2] and [13]), and reviews how the well-known
range of geometric objects of conformal geometric algebra (CGA) can be
successfully embedded, constructed and computed with in QCGA. Section 4
then introduces the general algebraic construction of quadratic surfaces from
contact points. Next, the first main Sect. 5 concentrates on presenting the
treatment of axis aligned quadratic surfaces defined from suitable contact
points and null basis infinity vectors. The second main Sect. 6 treats the dual
representation of quadratic surfaces in QCGA, which proves ideal for the
straightforward definition of quadratic surfaces in terms of dual 1-vectors,
simply constituting of linear combinations of basis vectors of R9,6 with coef-
ficients from their implicit scalar equations. For completeness, Sect. 7 briefly
reviews the way quadratic surfaces can be intersected in QCGA. Section 8
concludes the paper followed by acknowledgments and references.

1.1. Contributions

We provide new tools for QCGA that bring easier definition of conformal
geometric algebra objects. With this construction, the definition of quadratic

1Git clone https://git.renater.fr/garamon.git.

https://git.renater.fr/garamon.git
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surfaces becomes more intuitive. We also show that QCGA is capable of defin-
ing both degenerate and non-degenerate centered axis-aligned quadratic sur-
faces from the minimum number of necessary control points. We also present
an alternative way of definition, that makes direct use of the coefficients of
the implicit quadratic equations.

1.2. Notation conventions

Throughout this paper, the following notation is used: Lower-case bold letters
denote basis blades and multivectors (multivector a). Italic lower-case letters
refer to multivector components (a1, x, y2, · · · ). For example, ai is the ith

coordinate of the multivector a. Constant scalars are denoted using lower-case
default text font (constant radius r) or simply r. The superscripts star used
in x∗ represents the dualization of the multivector x. Moreover, subscript ε
on xε concerns the Euclidean vector associated with the vector x of QCGA.
Finally, subscript C refers to the embedding of Conformal Geometric Algebra
of the entity.

Note that when used in the geometric algebra inner product, the con-
traction and the outer product have priority over the full geometric product.
For instance, a ∧ bI = (a ∧ b)I.

2. QCGA definition and algebraic relations

2.1. QCGA basis and metric

The algebraic equations in this section can be either computed by hand
through expanding all blades in terms of basis vectors [11], or computed
using a software such as the Clifford toolbox for MATLAB [18]. Further
algebraic details and relationships may be found in Section 2 of [13]. The
QCGA Cl(9, 6) is defined over the 15-dimensional vector space R

9,6. The
base vectors of the space are naturally divided into three groups: {e1, e2, e3}
(corresponding to Euclidean vectors of R

3), {eo1, eo2, eo3, eo4, eo5, eo6},
and {e∞1, e∞2, e∞3, e∞4, e∞5, e∞6}. The inner products between them are
defined in Table 1.

For efficient computations, a diagonal metric matrix may furthermore
be useful. The algebra Cl(9, 6) generated by the Euclidean basis {e1, e2, e3},
and six basis vectors {e+1, e+2, e+3, e+4, e+5, e+6} squaring to +1 along with
six other basis vectors {e−1, e−2, e−1,e−4, e−5, e−6} squaring to −1, would
correspond to a diagonal metric matrix. Following the approach of [13] for
a successful formulation of versors for rotation, translation and scaling, the
transformation from the diagonal metric basis to that of Table 1 can consis-
tently be defined for 1 ≤ i, j ≤ 6 as follows:

e∞i =
1√
2
(e+i + e−i), eoi =

1√
2
(e−i − e+i), e∞i · eoi = −1, (2.1)

e∞ = 1
3 (e∞1 + e∞2 + e∞3), eo = eo1 + eo2 + eo3, (2.2)

e∞ · eo = −1, e2
o = e2

∞ = 0, (2.3)
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Table 1. Inner product between QCGA basis vectors

e1 e2 e3 eo1 e∞1 eo2 e∞2 eo3 e∞3 eo4 e∞4 eo5 e∞5 eo6 e∞6

e1 1 0 0 · · · · · · · · · · · ·
e2 0 1 0 · · · · · · · · · · · ·
e3 0 0 1 · · · · · · · · · · · ·
eo1 · · · 0 −1 · · · · · · · · · ·
e∞1 · · · −1 0 · · · · · · · · · ·
eo2 · · · · · 0 −1 · · · · · · · ·
e∞2 · · · · · −1 0 · · · · · · · ·
eo3 · · · · · · · 0 −1 · · · · · ·
e∞3 · · · · · · · −1 0 · · · · · ·
eo4 · · · · · · · · · 0 −1 · · · ·
e∞4 · · · · · · · · · −1 0 · · · ·
eo5 · · · · · · · · · · · 0 −1 · ·
e∞5 · · · · · · · · · · · −1 0 · ·
eo6 · · · · · · · · · · · · · 0 −1
e∞6 · · · · · · · · · · · · · −1 0

with bivectors Ei, E, defined by

Ei = e∞i ∧ eoi = e+ie−i, E2
i = 1, EiEj = EjEi, (2.4)

eoiEi = −Eieoi = −eoi, e∞iEi = −Eie∞i = e∞i, (2.5)

E = e∞ ∧ eo, E2 = 1, eoE = −Eeo = −eo,

e∞E = −Ee∞ = e∞. (2.6)

For clarity, we also define the following blades:

I∞a = e∞1e∞2e∞3, I∞b = e∞4e∞5e∞6, I∞ = I∞aI∞b, (2.7)

Ioa = eo1eo2eo3, Iob = eo4eo5eo6, Io = IoaIob, (2.8)

I∞o = I∞ ∧ Io = −E1E2E3E4E5E6, I2∞o = 1, (2.9)

IoI∞o = I∞oIo = −Io, I∞I∞o = I∞oI∞ = −I∞, (2.10)

I�
∞a = (e∞1 − e∞2) ∧ (e∞2 − e∞3), I�

∞ = I�
∞aI∞b, (2.11)

I�
oa = (eo1 − eo2) ∧ (eo2 − eo3), I�

o = I�
oaIob, I� = I�

∞ ∧ I�
o . (2.12)

We note that

I∞a ∧ Ioa = −E1E2E3, I∞b ∧ Iob = −E4E5E6, (2.13)

I� = I�
∞a ∧ I�

oa I∞b ∧ Iob = −I�
∞a ∧ I�

oa E4E5E6, (2.14)

(I�)2 = (I�
∞a ∧ I�

oa)2 = 9, (I�)−1 = 1
9 I

�, (2.15)

(I�
∞a ∧ I�

oa)−1 = 1
9 I

�
∞a ∧ I�

oa, (2.16)

I�
∞ · I�

o = I�
o · I�

∞ = I�
∞�I�

o = I�
∞�I�

o = −3. (2.17)
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We have the following outer products

I∞a = e∞1 ∧ I�
∞a = e∞2 ∧ I�

∞a = e∞3 ∧ I�
∞a

= e∞ ∧ I�
∞a = e∞ I�

∞a, (2.18)

Ioa = eo1 ∧ I�
oa = eo2 ∧ I�

oa = eo3 ∧ I�
oa

= 1
3eo ∧ I�

oa = 1
3eo I�

oa, (2.19)

I∞a ∧ Ioa = E1 ∧ I�
∞a ∧ I�

oa = E2 ∧ I�
∞a ∧ I�

oa = E3 ∧ I�
∞a ∧ I�

oa

= 1
3E ∧ I�

∞a ∧ I�
oa = 1

3E I�
∞a ∧ I�

oa. (2.20)

And we have the following inner products

I�
oa = −3e∞ · Ioa, I�

o = −3e∞ · Io, (2.21)

I�
∞a = −eo · I∞a, I�

∞ = −eo · I∞, (2.22)

(eoi · I∞) · Io = −eoi, (e∞i · Io) · I∞ = −e∞i, (2.23)

(eo · I∞) · Io = −eo, (e∞ · Io) · I∞ = −e∞ (2.24)

e∞ · I∞o = − 1
3I∞ ∧ I�

o , eo · I∞o = −I�
∞ ∧ Io, (2.25)

e∞i · I�
∞a = 0, e∞i · I�

∞ = 0,

e∞ · I�
∞a = 0, e∞ · I�

∞ = 0, (2.26)

eoi · I�
oa = 0, eoi · I�

o = 0,

eo · I�
oa = 0, eo · I�

o = 0, (2.27)

e∞ · I�
oa = 0, e∞ · I�

o = 0,

eo · I�
∞a = 0, eo · I�

∞ = 0, (2.28)

e∞ · I� = 0, eo · I� = 0, E · I� = 0. (2.29)

As the consequence, we obtain

I∞ = e∞I�
∞ = e∞ ∧ I�

∞, I∞ ∧ I�
o = e∞I�

= e∞ ∧ I� = I� e∞, (2.30)

3 Io = eoI�
o = eo ∧ I�

o ,

−3 I�
∞ ∧ Io = eoI� = eo ∧ I� = I� eo, (2.31)

−3 I∞o = E I� = E ∧ I� = I�E. (2.32)

We can summarize the important set of relations

{1, eo, e∞, E} ∧ I�
∞ ∧ I�

o

= {1, eo, e∞, E} I�
∞ ∧ I�

o = I�
∞ ∧ I�

o {1, eo, e∞, E}. (2.33)

We define the pseudo-scalar Iε in R
3 by

Iε = e1e2e3, I2ε = −1, I−1
ε = −Iε, (2.34)

and the conformal pseudo-scalar IC in R
4,1 by

IC = e1e2e3 e∞ ∧ eo = IεE, I2C = −1, I−1
C = −IC, (2.35)
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as well as the full 15-blade pseudo-scalar I of Cl(9, 6) and its inverse I−1

(used for dualization x → x∗):

I = IεI∞o = −IεE1E2E3E4E5E6, I2 = −1, I−1 = −I. (2.36)

The dual of a multivector indicates the division by the pseudo-scalar, e.g.,
a∗ = −aI, a = a∗I. From eq. (1.19) in [14], we have the useful duality between
outer and inner products of non-scalar blades A,B in geometric algebra:

(A ∧ B)∗ = A · B∗,
A ∧ (B∗) = (A · B)∗ ⇔ A ∧ (B I) = (A · B) I, (2.37)

which indicates that

A ∧ B = 0 ⇔ A · B∗ = 0, A · B = 0 ⇔ A ∧ B∗ = 0. (2.38)

Using (2.23) and (2.24), useful duality relationships are

(I∞ ∧ Io)∗ = −Iε, (I∞ ∧ I�
o )∗ = −3Iεe∞, (2.39)

(
Iε(eoi · I∞) ∧ Io

)∗ = −eoi,
(
IεI∞ ∧ (e∞i · Io)

)∗ = −e∞i, (2.40)
(
Iε(eo · I∞) ∧ Io

)∗ = −eo,
(
IεI∞ ∧ (e∞ · Io)

)∗ = −e∞. (2.41)

3. Points and embedded CGA objects in QCGA

QCGA is an extension of conformal geometric algebra (CGA). Thus, objects
defined in CGA are also defined in QCGA. The following sections introduce
the important definition of a general point in QCGA, and show how all round
and flat geometric objects (point pairs, flat points, circles, lines, spheres and
planes) of CGA can be straightforwardly embedded in QCGA.

3.1. Point in QCGA

The point x of QCGA corresponding to the Euclidean point xε = xe1+ye2+
ze3 ∈ R

3 is defined as

x = xε + 1
2 (x2e∞1 + y2e∞2 + z2e∞3) + xye∞4 + xze∞5 + yze∞6 + eo.

(3.1)

Note that the null vectors eo4, eo5, eo6 are not present in the definition of the
point. This is merely to keep the convenient properties of the CGA points,
namely, the inner product between two points is identical with the squared
distance between them. Let x1 and x2 be two points. Then, their inner prod-
uct is

x1 · x2 = (x1ε + 1
2x2

1e∞1 + 1
2y2

1e∞2 + 1
2z2

1e∞3 + x1y1e∞4

+ x1z1e∞5 + y1z1e∞6 + eo)

· (x2ε + 1
2x2

2e∞1 + 1
2y2

2e∞2 + 1
2z2

2e∞3 + x2y2e∞4

+ x2z2e∞5 + y2z2e∞6 + eo). (3.2)

from which together with Table 1, it follows that

x1 · x2 = x1ε · x2ε − 1
2 (x2

1 + y2
1 + z2

1 + x2
2 + y2

2 + z2
2)

= − 1
2 (x1ε − x2ε)2. (3.3)
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We see that the inner product is equivalent to minus half of the squared
Euclidean distance between the two points x1 and x2.

In the remainder of this paper, the following result will be useful, be-
cause it relates a point in QCGA to the representation in CGA R

4,1 with
vector basis {eo, e1, e2, e3, e∞}.

x ∧ I�
∞ =

(
xε + 1

2 (x2e∞1 + y2e∞2 + z2e∞3) + eo

)
∧ I�

∞

= (xε + eo) ∧ I�
∞ + 1

2 (x2e∞1 + y2e∞2 + z2e∞3) ∧ I�
∞

= (xε + eo) ∧ I�
∞ + 1

2 (x2 + y2 + z2) e∞ ∧ I�
∞

= (xε + eo) ∧ I�
∞ + 1

2x
2
ε e∞ ∧ I�

∞
= (xε + 1

2x
2
εe∞ + eo) ∧ I�

∞ = xC ∧ I�
∞ = xC I�

∞, (3.4)

where we have dropped in the first line the cross terms xye∞4 + xze∞5 +
yze∞6, because wedging with I∞b = e∞4 ∧ e∞5 ∧ e∞6, a factor in I�

∞ =
I�
∞aI∞b, eliminates them. Therefore, if a point in QCGA appears wedged

with I�
∞, we can always replace it by the form

xC = xε + 1
2x

2
εe∞ + eo = − 1

3x ∧ I�
∞�I�

o . (3.5)

This, in turn, means that we can embed in QCGA the known CGA represen-
tations [14] in Cl(4, 1) of round and flat objects, by taking the outer products
of between one and five points with I�

∞, as further shown below.

3.2. Round and flat objects in QCGA

We refer points, point pairs, circles, and spheres with uniform curvature as
round objects. Similar to CGA, these can be defined by the outer product of
one to four points with I�

∞. Their center cC, radius r and Euclidean carrier
D can be easily extracted. Moreover, they can be directly constructed from
their center cC, radius r and Euclidean carrier D.

Wedging any round object with the point at infinity e∞, gives the cor-
responding flat object multivector. From it the orthogonal distance to the
origin cε⊥ and the Euclidean carrier D can easily be extracted.

We now briefly review the CGA description of round and flat objects
embedded in QCGA. The round objects are

P = x ∧ I�
∞ = xC I�

∞, (3.6)

Pp = x1 ∧ x2 ∧ I�
∞ = x1C ∧ x2C I�

∞, (3.7)

Circle = x1 ∧ x2 ∧ x3 ∧ I�
∞ = x1C ∧ x2C ∧ x3C I�

∞, (3.8)

Sphere = x1 ∧ x2 ∧ x3 ∧ x4 ∧ I�
∞ = x1C ∧ x2C ∧ x3C ∧ x4C I�

∞. (3.9)

The corresponding flat objects are

Flatp = −P ∧ e∞ = x ∧ e∞ ∧ I�
∞ = xC ∧ e∞ I�

∞, (3.10)

Line = −Pp ∧ e∞ = x1 ∧ x2 ∧ e∞ ∧ I�
∞ = x1 ∧ x2 ∧ e∞ ∧ I∞

= x1C ∧ x2C ∧ e∞ I�
∞, (3.11)

Plane = −Circle ∧ e∞ = x1 ∧ x2 ∧ x3 ∧ e∞ ∧ I�
∞

= x1C ∧ x2C ∧ x3C ∧ e∞ I�
∞, (3.12)
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Space = −Sphere ∧ e∞ = x1 ∧ x2 ∧ x3 ∧ x4 ∧ e∞ ∧ I�
∞

= x1C ∧ x2C ∧ x3C ∧ x4C ∧ e∞ I�
∞. (3.13)

The above embeddings by means of the outer product with I�
∞, allow to

use standard CGA results found in [14]. All embedded round entities of point,
point pair, circle, and sphere (spheres in zero, one, two and three dimensions)
have one common multivector form2

S =
(
D ∧ cε +

[
1
2 (c2

ε + r2)D − cεcε�D
]
e∞ + Deo + D�cεE

)
I�
∞ = SC I�

∞,

SC = − 1
3S� I�

o . (3.14)

The Euclidean carriers D are for each object are Euclidean scalar, vector,
bivector and trivector, respectively,

D =

⎧
⎪⎪⎨

⎪⎪⎩

1, point x
dε, point pair Pp
ic, circle Circle
Iε, sphere Sphere

, (3.15)

where the unit point pair connection direction vector is dε = (x1ε − x2ε)/2r
and the Euclidean circle plane bivector is ic. The radius r of a round object
and its center cC are generally determined by

r2 =
SCS̃C

(SC ∧ e∞)(SC ∧ e∞)̃
, cC = SC e∞ SC, (3.16)

where the tilde symbol indicates the reverse operator.
All embedded flat entities of flat point, line, plane, and space have one

common multivector form

F = −S ∧ e∞ = (D ∧ cεe∞ − DE) I�
∞ = (Dcε⊥e∞ − DE) I�

∞ = FC I�
∞,

FC = −SC ∧ e∞ = 1
3F � I�

o , (3.17)

where the orthogonal Euclidean distance of the flat object from the origin is

cε⊥ =

⎧
⎪⎪⎨

⎪⎪⎩

xε, finite-infinite point pair Flatp
cε⊥, line Line
cε⊥, plane Plane

0, 3D space Space

. (3.18)

The Euclidean carrier blade D, and the orthogonal Euclidean distance vector
of F from the origin, can both be directly determined from the flat object
multivector as

D = FC� E , cε⊥ = D−1(FC ∧ eo)� E . (3.19)

For a further detailed description of lines, planes and spheres in QCGA, we
refer to [2].

2Note that the product symbols � and � express left- and right contraction, respectively.
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4. Quadratic surfaces from contact points

This section describes how QCGA handles quadratic surfaces. All the em-
bedded CGA objects in QCGA defined in Sect. 3 are thus a part of a more
general framework algebraic.

A quadratic surface in R
3 is implicitly formulated as

F (x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0.
(4.1)

A quadratic surface is constructed by the outer product of nine contact points
as follows

q = x1 ∧ x2 ∧ · · · ∧ x9. (4.2)

Note that in [2], the definition of q additionally included wedging with I�
o

(thus forming a pseudovector of grade 14 in Cl(9, 6)), but as found in [13], this
would seriously impede the use of versor operators for geometric transforma-
tions of rotation, translation and scaling, due to the lack of transformation
invariance of I�

o . The multivector q corresponds to the primal form of a qua-
dratic surface in QCGA, with grade nine and twelve components. Again three
of these components have the same coefficient and can be combined together
in a form defined by only ten coefficients a, b, ..., j, and we obtain a quadratic
surface q and the related computationally efficient dual vector of (q ∧ I�

o )∗

as

q ∧ I�
o = Iε((2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6) · I∞) ∧ Io

+ (ge1 + he2 + ie3)Iε I∞o + j Iε I∞ ∧ (e∞ · Io)

= (−(2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6)

+ (ge1 + he2 + ie3) − je∞) I

= (q ∧ I�
o )∗ I, (4.3)

where in the second equality we used the duality relationships of (2.40). The
expression for the dual vector (q ∧ I�

o )∗ is therefore

(q ∧ I�
o )∗ = −(2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6)

+ (ge1 + he2 + ie3) − je∞. (4.4)

Proposition 4.1. A point x lies on the quadratic surface q, if and only if
x ∧ q ∧ I�

o = 0.

Proof.

x ∧ (q ∧ I�
o ) = x ∧ (

(q ∧ I�
o )∗I

)
= x · (q ∧ I�

o )∗ I

= x · (−(2aeo1 + 2beo2 + 2ceo3 + deo4 + eeo5 + feo6)

+ (ge1 + he2 + ie3

) − je∞)I

= (ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j) I.
(4.5)

This corresponds to the implicit formula (4.1) representing a general qua-
dratic surface. �
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The dualization of the primal quadratic surface (4.2) wedged with I�
o

leads to the dual 1-vector (q∧ I�
o )∗ of (4.4). Dualization of (4.5) gives us the

following corollary.

Corollary 4.2. A point x lies on the dual quadratic surface q∗ if and only if
x · (q ∧ I�

o )∗ = 0.

5. Aligned quadratic surfaces from contact points

Up to now, we defined general quadratic surfaces using the outer product
of nine points. For simplicity purpose, one might sometimes prefer to define
axis-aligned quadratic surfaces from fewer points. The implicit equation of
an axis-aligned quadratic surface is as follows:

F (x, y, z) = ax2 + by2 + cz2 + gx + hy + iz + j = 0. (5.1)

On one hand, this equation has seven coefficients and six degrees of
freedom. An axis-aligned quadratic surface can then be constructed by com-
puting the outer product of six points. On the other hand, one has to remove
the cross terms xy, xz, yz in the representation of points to be able to satisfy
Eq. (5.1). To achieve this, our solution is to compute the outer product with
e∞4, e∞5, e∞6, i.e. with I∞b = e∞4 ∧ e∞5 ∧ e∞6. Indeed, one finds that any
point x satisfies

x ∧ e∞4 ∧ e∞5 ∧ e∞6

= x ∧ I∞b = (eo + xε + 1
2 (x2e∞1 + y2e∞2 + z2e∞3)) ∧ I∞b. (5.2)

Thus, one can consider that an axis aligned quadratic surface is a general
quadratic surface where three points are sent to infinity e∞4, e∞5, e∞6 in the
following way:

q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 ∧ I∞b. (5.3)

This grade nine multivector blade q corresponds to the primal form of a
quadratic surface, outer product of six points with three e∞i, i = 4, 5, 6,
basis vector factors in I∞b, and this quadratic surface has nine components.
For the same reason as in the construction of the general quadratic surface,
we can combine three components having the same coefficient. Furthermore,
computing the outer product with I∞b = e∞4 ∧ e∞5 ∧ e∞6 removes the
components e∞4, e∞5, e∞6 of each of the six points. Combining the outer
product of such points with null basis vectors and wedging with I�

o , results
in the form defined by the seven coefficients a, b, c, g, h, i, j as

q ∧ I�
o = Iε

(
(2aeo1 + 2beo2 + 2ceo3) · I∞

) ∧ Io

+(ge1 + he2 + ie3)IεI∞ ∧ Io + j I∞ ∧ (e∞ · Io). (5.4)

Proposition 5.1. A point x lies on an axis-aligned quadratic surface q, iff
x ∧ q ∧ I�

o = 0.
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Figure 1. Result of one paraboloid from six points

Proof.

x ∧ q ∧ I�
o = x ∧ ((q ∧ I�

o )∗I) = x · (q ∧ I�
o )∗ I

= (x · (−2(aeo1 + beo2 + ceo3) + ge1 + he2 + ie3 − je∞))I

= (ax2 + by2 + cz2 + gx + hy + iz + j) I. (5.5)

This corresponds to the formula (5.1) representing an axis-aligned quadratic
surface. �

Now it is easy to construct an axis-aligned quadratic surface by prop-
erly choosing the contact points that lie on the chosen axis-aligned quadratic
surface. The next sections present some examples of chosen axis-aligned qua-
dratic surfaces, with some chosen points that lie on these quadratic surfaces.

5.1. Representation of a primal axis-aligned paraboloid

We can construct the axis-aligned elliptic paraboloid using six points that lie
on it. For example, the points:

x1(0.0, 0.0, 0.0), x2(−0.39, 0.1, 0.33), x3(0.0,−0.41, 0.5),
x4(0.0, 0.23, 0.17), x5(0.47, 0.0, 0.45), x6(0.29,−0.27, 0.4),

lie on an axis-aligned elliptic paraboloid. The result of Eq. 5.3) applied to
these points is shown in Fig. 1.

5.2. Representation of a primal axis-aligned hyperbolic paraboloid

Using the same equation, and replacing the contact points by some that lie
on an axis-aligned hyperbolic paraboloid

x1(0.0, 0.0, 0.0), x2(0.45,−0.01, 0.2), x3(0.34,−0.37,−0.17),
x4(−0.47,−0.18, 0.15), x5(−0.36, 0.12, 0.1), x6(0.18, 0.13, 0.0),

results in the axis-aligned hyperbolic paraboloid shown in Fig. 2.

5.3. Representation of a primal axis-aligned cylinder

An axis-aligned cylinder is an axis-aligned quadratic surface where one of the
squared components is removed with respect to the axis of the cylinder.

On one hand, this supposes that an axis-aligned cylinder can be con-
structed using only five points. On the other hand, this means that the con-
sidered component of each point taken to construct the quadratic surface has
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Figure 2. Result of one hyperbolic paraboloid from six points

to be removed. In a QCGA point, the squared components lie in the e∞1,
e∞2, e∞3 components. Thus, replacing one point in Eq. (5.3) by a point
at infinity with respect to the desired alignment axis (choosing from {e∞1,
e∞2, e∞3} for x-, y-, or z-axis alignment, respectively) defines the desired
axis-aligned cylinder. For example, one can define an axis-aligned cylinder
along the z-axis from only five points. Therefore, in equation (5.3), we can
replace a point by one of the points at infinity, i.e., e∞3 for a z-axis aligned
centered cylinder. For example, we choose the following five points

x1(−0.2, 0.1, 0.3), x2(0.4, 0.1, 0.2), x3(0.1, 0.4, 0.1),

x4(0.1,−0.2, 0.4), x5(0.1,−0.2,−0.4),

and the outer product between these five points and e∞3 with I∞b (for axis
alignment) as

q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞3 ∧ I∞b. (5.6)

The cylinder whose axis is the (Oy) axis can be constructed by replacing e∞3

in the above equation by e∞2:

q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞2 ∧ I∞b. (5.7)

And finally, the cylinder whose axis is the (Ox) axis is obtained by replacing
e∞3 by e∞1:

q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞1 ∧ I∞b. (5.8)

Figure 3 shows three cylinders: one along (Ox), another along (Oy), and the
third one along (Oz).

5.4. Representation of a primal axis-aligned elliptic cylinder

As five points are enough to uniquely define a cylinder, five points define
also an axis-aligned elliptic cylinder whose main axis is given by the null
basis vector replacing the sixth point. For example, an axis-aligned elliptic
cylinder whose main axis is (Oz) can be defined with the following five points
lying on it
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Figure 3. Construction of three cylinders along (Ox) in
blue,(Oy) in green and Oz) in red, applying (5.8), (5.7) and
(5.6). Each cylinder is constructed from five points and has
the same diameter

Figure 4. Construction of one elliptic cylinder from five points

x1(−0.44, 0.0, 0.0), x2(0.0,−0.2, 0.0), x3(0.3, 0.15, 0.15),

x4(0.0, 0.2, 0.3), x5(0.44, 0.0, 0.4).

The result is represented in Fig. 4.

5.5. Representation of a primal axis-aligned spheroid

A spheroid is characterized as an ellipsoid having two of its axes whose length
is equal. Again, this property supposes that an axis-aligned spheroid can be
constructed from five points. Furthermore, one has to constrain each point
such that the squared components along the two of its axes have the same
length. This is achieved by the outer product of the points and the vector
e∞i−e∞j , where i and j 
= i, specify the two equal length axes. This 1-vector
e∞i − e∞j can be geometrically seen as the bisecting plane at infinity along
the two considered axes, leading to some new geometric interpretations in
the algebra.

Further geometric understanding of the algebraic operation of the outer
product with e∞i − e∞j , i and j 
= i, can be gained from expanding the
five blade I�

∞, that is instrumental for embedding CGA objects in QCGA, as
explained in Sect. 3.2. The expansion gives
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I�
∞ = I�

∞a ∧ I∞b = (e∞1 − e∞2) ∧ (e∞2 − e∞3) ∧ I∞b

= (e∞2 − e∞3) ∧ (e∞3 − e∞1) ∧ I∞b

= (e∞1 ∧ e∞2 + e∞2 ∧ e∞3 + e∞3 ∧ e∞1) ∧ I∞b, (5.9)

where we see that the three factors e∞1 − e∞2, e∞2 − e∞3 and e∞3 − e∞1,
are all factors of I�

∞, thus producing circles in every coordinate plane and
in every dimension, and the second trivector blade factor I∞b forces axis
alignment, as discussed at the beginning of the current section. In that sense
we understand that wedging four points in (3.9) with I�

∞, necessarily leads
to a sphere with circular cross sections in every coordinate plane, and with
axis alignment, even though this latter fact is subtle for isotropic objects,
like spheres. In CGA a plane is the limiting case of a sphere with infinite
radius. The other objects of circle and line, point pair and flat point, are
simply the lower dimensional versions of the spherical and planar case in
three dimensions.

Thus, we can construct a spheroid having equal length axis Ox and Oy
by

x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ (e∞1 − e∞2) ∧ I∞b. (5.10)

Note that the sixth point is replaced by (e∞1 − e∞2). As an example, we
construct the axis-aligned prolate (elongated in the z-axis) spheroid passing
through the five following points lying on a prolate spheroid

x1(−0.26, 0.0, 0.0), x2(0.03, 0.22, 0.24), x3(−0.2,−0.1,−0.23),

x4(0.0, 0.26, 0.0), x5(0.0, 0.0, 0.45).

The resulting surface is shown in Fig. 5.

Figure 5. Construction of axis-aligned prolate spheroid
from five points
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5.6. Representation of a primal axis-aligned pair of planes

Sending one point of a sphere to infinity e∞ results in the plane passing
through the remaining points. Now by sending two points of an ellipsoid to
infinity, we obtain a pair of parallel planes. This indicates that an axis-aligned
pair of planes can be constructed from four points. Then, this can be achieved
by the outer product of four points x1,x2,x3,x4 and two points at infinity
e∞1, e∞2 in the following equation

x1 ∧ x2 ∧ x3 ∧ x4 ∧ e∞1 ∧ e∞2 ∧ I∞b. (5.11)

5.7. Representation of a primal axis-aligned curve

Two points define a bi-cylindrical curve, meaning that the curve obtained
by the intersection of two cylinders. Therefore, given two points and three
points at infinity, it is possible to construct a bi-cylindrical curve as follows

x1 ∧ x2 ∧ e∞1 ∧ e∞2 ∧ e∞3 ∧ I∞b = x1 ∧ x2 ∧ I∞. (5.12)

Looking back, we see that the above expression can also be developed from
the CGA point pair (3.7) or understood as another geometric interpretation
of the embedding of the CGA line (3.11). Note that the computer algebra
construction of all these entities is available using the recently developed
software plugin qc3gaTools.hpp.3

6. Dual quadratic surface representation and implicit
equations

The dualization of a primal quadratic surface 9-blade q after the outer
product with I�

o leads to the dual 1-vector quadratic surface representation
(q ∧ I�

o )∗ of (4.4). Corollary 4.2 can be rephrased as

Proposition 6.1. A point x lies on the dual quadratic surface (q ∧ I�
o )∗ iff

x · (q ∧ I�
o )∗ = 0.

This dualization enables us to define axis-aligned quadratic surfaces as
vectors in R

9,6 by simply using the coefficients of their conventional implicit
equations.

6.1. Some examples of dual quadratic surface representations

This subsection presents the construction of some specific quadratic surfaces.

6.1.1. Representation of a dual axis-aligned ellipsoid. First, an axis-aligned
ellipsoid can be computed as follows:

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
b2
eo2 +

1
c2

eo3 + 1
2e∞, (6.1)

where a, b, c are the semi-axis parameters of the ellipsoid. This construction
is further illustrated in Fig. 6.

3Git clone https://git.renater.fr/garamon.git.

https://git.renater.fr/garamon.git
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Figure 6. Construction of an axis-aligned ellipsoid

Figure 7. Construction of a generalized cylinder from nine points

6.1.2. Representation of a dual axis-aligned elliptic cylinder. Another exam-
ple of a quadratic surface is the cylinder. An elliptic axis-aligned cylinder can
easily be defined. A cylinder whose main axis is (Oz) and whose cross section
semi-axis are a and b can be defined as follows

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
b2
eo2 − 1

2e∞. (6.2)

Note that a non-axis aligned elliptic cylinder can be constructed as the outer
product of nine points as shown in Fig. 7, or it could be obtained from (6.2),
applying the geometric transformation versors of [13].

6.1.3. Representation of a dual axis-aligned hyperbolic paraboloid. Another
example of axis-aligned quadratic surface is the hyperbolic paraboloid, also
called saddle. It can be defined as:

(q ∧ I�
o )∗ =

1
a2

eo1 − 1
b2
eo2 + 1

2e3. (6.3)

An axis-aligned cone can be dually represented in QCGA as follows:

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
b2
eo2 − eo3. (6.4)

6.1.4. Representation of a dual axis-aligned hyperboloid. An axis-aligned hy-
perboloid of one sheet can be constructed as follows:

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
a2

eo2 − 1
c2

eo3 − 1
2e∞ (6.5)
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Figure 8. Construction of a dual hyperboloid of one sheet

Figure 9. Construction of a axis-aligned pair of planes

An example of such a quadratic surface is shown in Fig. 8. Changing the sign
of 1

2e∞, the definition of an axis-aligned hyperboloid of two sheets is given
by

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
a2

eo2 − 1
c2

eo3 + 1
2e∞. (6.6)

6.1.5. Representation of a dual axis-aligned elliptic paraboloid. An axis-
aligned elliptic paraboloid can be defined as

(q ∧ I�
o )∗ =

1
a2

eo1 +
1
b2
eo2 + 1

2e3. (6.7)

6.1.6. Representation of a dual axis-aligned degenerate quadratic surfaces.
As previously seen, degenerate quadratic surfaces can also be defined. For
example, a pair of planes can be defined as:

(q ∧ I�
o )∗ = eo1 − eo2. (6.8)

An illustration of such a pair of planes using QCGA is shown in Fig. 9.
Tables 2 and 3 summarize the dual definition of CGA objects, as well

as axis-aligned quadratic surfaces and degenerate quadratic surfaces.
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Table 2. Definition of dual CGA objects embedded in
QCGA, computed from SC and FC of Sect. 3.2, using IC
of (2.35)

Geometric objects Dual definition

Sphere s∗
C = cε − 1

2 r2e∞
Plane π∗

C = nε + de∞
Line l∗C = aεIε + e∞mεIε

l∗C = π∗
C1 ∧ π∗

C2

Circle o∗
C = s∗

C1 ∧ s∗
C1

o∗
C = s∗

C ∧ πC

Point pair p∗
pC = s∗

C ∧ l∗C
p∗

pC = o∗
C1 ∧ o∗

C2

p∗
pC = s∗

C1 ∧ s∗
C2 ∧ s∗

C3

Notation: cε is the Euclidean center position of the sphere, nε the unit
normal vector to the plane, d is the distance of the plane from the origin, aε

the direction vector of the line, mε the bivector moment of the line

Table 3. Definition of dual axis-aligned quadratic surfaces
using QCGA

Geometric object Dual vector definition

Ellipsoid (q ∧ I�
o )∗ = 1

a2 eo1 + 1
b2 eo2 + 1

c2 eo3 + 1
2e∞

Cone (q ∧ I�
o )∗ = 1

a2 eo1 + 1
b2 eo2 − eo3

Cylinder (q ∧ I�
o )∗ = 1

a2 eo1 + 1
b2 eo2 − 1

2e∞
Hyperbolic paraboloid (q ∧ I�

o )∗ = 1
a2 eo1 − 1

b2 eo2 + 1
2e3

Elliptic paraboloid (q ∧ I�
o )∗ = 1

a2 eo1 + 1
b2 eo2 + 1

2e3

Hyperboloid
one sheet (q ∧ I�

o )∗ = − 1
a2 eo1 − 1

a2 eo2 + 1
c2 eo3 + 1

2e∞
two sheets (q ∧ I�

o )∗ = − 1
a2 eo1 − 1

a2 eo2 + 1
c2 eo3 − 1

2e∞
Pair of planes q∗ = eo1 − eo2

Table 4 details a class of objects that can be handled using QCGA. Ta-
ble 5 summarizes some definitions of axis-aligned primal objects constructed
from points in QCGA.

The construction of axis aligned and origin centered quadratic surfaces
based on their implicit equation coefficients is seen to be very straightforward.
The availability of versors for rotation, translation and scaling [13] allows
then to begin with aligned quadratic surfaces centered at the origin and to
subsequently move them to arbitrary position, freely change their orientation
by rotation, and moreover scale them arbitrarily.
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Table 4. Definition of primal geometric objects using QCGA

Round object (sphere, circle, . . .) q = x1 ∧ x2 ∧ · · · ∧ I�
∞

Flat object (plane, line, . . .) q = x1 ∧ x2 ∧ · · · ∧ e∞ ∧ I�
∞

Axis-aligned quadratic surface q = x1 ∧ · · · ∧ x6 ∧ I∞b

General quadratic surface q = x1 ∧ x2 ∧ x2 · · · ∧ x9

Table 5. Definition of some primal axis-aligned quadratic
surfaces using QCGA

Ellipsoids q = x1 ∧ · · · ∧ x6 ∧ I∞b

Paraboloids
Hyperbolic paraboloids
Spheroids q = x1 ∧ · · · ∧ x5 ∧ (e∞1 − e∞2) ∧ I∞b

Cylinders q = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ e∞3 ∧ I∞b

Elliptic cylinders

7. Intersections

One of the most fascinating properties of QCGA, is that like in CGA, all
objects can be intersected by simply taking the outer products of their duals.
That is, any number of linearly independent round or flat embedded CGA
objects in QCGA and any number of quadratic surfaces after wedging with
I�
o , can be intersected by computing the dual of the outer product of duals

as follows (see [13])

(intersect ∧ I�
o )∗ = (A ∧ I�

o )∗ ∧ (B ∧ I�
o )∗ ∧ . . . ∧ (Z ∧ I�

o )∗. (7.1)

The criterion for a general point x to be on the intersection is

x · (intersect ∧ I�
o )∗ = 0, intersect = − 1

3

(
(intersect ∧ I�

o )∗I
)�I�

∞.(7.2)

For cases in which one object is completely included in another object (like
a line in a plane), the proper meet operation has to be defined by taking into
account the subspace spanned by the join of the two objects [15].

8. Conclusion

This paper presented a development of QCGA to represent and manipulate
quadratic surfaces in extended geometric algebras, in particular, aligned or
symmetric quadratic surfaces. After recalling the main ideas of QCGA [2],
together with the null basis vector modifications of [13], we presented a de-
tailed set of algebraic constructions and notations. This then allowed us to
represent both embedded objects of CGA and quadratic surfaces of QCGA
in a constructive and intuitive way. Furthermore, quadratic surfaces are now
represented more concisely and efficiently from either their implicit forms,
implicit axis aligned and origin centered forms followed by geometric versor
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transformations, or their control points. The intersection of all these objects
can easily be computed. In the future, we plan to extend this approach to
represent quadratic surfaces also to cubic surfaces. Finally, note that the ex-
amples presented in this paper were computed and visualized efficiently using
the new C++ library called Garamon in [1].
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