
Optimal Parenthesizing of Geometric
Algebra Products

Stéphane Breuils1(B) , Vincent Nozick2 , and Akihiro Sugimoto1

1 National Institute of Informatics, Tokyo, Japan
{breuils,sugimoto}@nii.ac.jp

2 Université Gustave Eiffel, LIGM,
CNRS - ENPC - ESIEE Paris -UPEM, Paris, France

vincent.nozick@univ-eiffel.fr

Abstract. Manipulating objects using geometric algebra may involve
several associative products in a single expression. For example, an object
can be constructed by the outer product of multiple points. This num-
ber of products can be small for some conformal algebra and high for
higher dimensional algebras such as quadric conformal geometric alge-
bras. In these situations, the order of products (i.e. the choice of the
parenthesis in the expression) should not change the final result but may
change the overall computational cost, according to the grade of the
intermediate multivectors. Indeed, the usual left to right way to evalu-
ate the expression may not be most computationally efficient. Studies
on the number of arithmetic operations of geometric algebra expressions
have been limited to products of only two homogeneous multivectors.
This paper shows that there exists an optimal order in the evaluation
of an expression involving geometric and outer products, and presents a
dynamic programming framework to find it.

Keywords: Geometric algebra · Products · Optimal parenthesis

1 Introduction

1.1 Geometric Algebra Products

Geometric algebra presents intuitive solutions for problems related to geometry.
Its theory is more and more investigated in various research fields like physics,
mathematics or computational geometry, see [5,9,10] for some examples. In con-
trast, in the computer science field, the study of computational aspects of the
geometric algebra operators is still limited. The pioneering work [7] gave some
results about complexity of geometric algebra products in the worst case. The
worst case here means that all the elements of a multivector with multiple grades
are non-zero. This study was then extended by [2] by investigating the number
of arithmetic products required for the geometric product, the outer product,
and the inner product of two full homogeneous multivectors, i.e., multivectors
with non-zero components only for a single grade. The scope of [2] is well suited
c© Springer Nature Switzerland AG 2020
N. Magnenat-Thalmann et al. (Eds.): CGI 2020, LNCS 12221, pp. 492–500, 2020.
https://doi.org/10.1007/978-3-030-61864-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61864-3_42&domain=pdf
http://orcid.org/0000-0002-8636-4977
http://orcid.org/0000-0001-8792-7164
http://orcid.org/0000-0001-9148-9822
https://doi.org/10.1007/978-3-030-61864-3_42

Optimal Parenthesizing of Geometric Algebra Products 493

for expressions involving two full multivectors like intersections of two geometric
objects in conformal geometric algebras. However, the representation of geomet-
ric objects in quadric conformal geometric algebras [3] includes more than two
multivectors in operands, and the arguments of [2] are not valid any more in such
a case. The investigation on products of more than two multivectors is desired.

In this paper, we focus on products having the associative property. If the
expression consists of only products that have the associative property, we only
have to pay our attention to efficiently parenthesize operands in computation.
The usual left to right way of computing the expression is not always the most
computationally efficient. Moreover, we focus on full homogeneous multivectors
since they are the representation of most geometric algebra objects. Note that
in many applications, the geometric algebra entity representing any rigid trans-
formations is also often represented as a sum of quasi full homogeneous multi-
vectors.

1.2 Contributions

This paper focuses on products of more than two multivectors where all the
products in the expression have the associative property. More specifically, this
paper considers only products of more than two multivectors where the products
are either outer products or geometric products. We then show that there exists
an optimal parenthesising order with respect to computational cost in the eval-
uation of an expression. Then, we describe a dynamic programming algorithm
that yields the optimal product order. We remark that the inner product is not
our interest in this paper because it is not associative.

2 Preliminaries

2.1 Notations

As commonly used in the state-of-the-arts ([6] and [11]), lower-case bold let-
ters refer to vectors (vector a) and lower-case non-bold letters to multivector
coordinates (coefficient ai). Multivectors and k-vectors are denoted with upper-
case non-bold letters (multivector A). The part of grade k of a multivector A is
denoted by 〈A〉k. The total number of basis blades is 2d, where d is the dimension
of the vector space, and in this case, the number of basis blades ei of grade 1.

By assumption, a multivector A is not necessarily homogeneous but is defined
as the sum of homogeneous multivectors. Given the dimension d of the vector
space, the set of possible grades for A is KA where KA ⊆ {0, 1, · · · , d}. Then, A
can be defined as

A =
∑

k∈KA

〈A〉k. (1)

494 S. Breuils et al.

2.2 Product of Two Multivectors

Following the notation of Eq. (1), the product � of two multivectors A and B is
then

A � B =
(∑

kA∈KA

〈A〉kA

)
�

(∑

kB∈KB

〈B〉kB

)
, (2)

where � can be either the outer product or the geometric product. The linearity
of the products of geometric algebra yields

A � B =
∑

kA∈KA

∑

kB∈KB

〈A〉kA
� 〈B〉kB

. (3)

Theorems 2.1 and 4.1 of [2] give the optimal number of arithmetic operations
of the product between two homogeneous multivectors of respective grades ka
and kb. As for the outer product ∧, this number of arithmetic operations is:

p∧
ka,kb

= 2
(

d

ka + kb

)(
ka + kb

ka

)
, (4)

where
(
n
k

)
is the binomial coefficient. On the other hand, the number of arith-

metic operations for the geometric product ∗ is:

p∗
ka,kb

= 2
∑

kc∈I

(
d

kc

)(
kc

ka − kb + kc
2

)(
d − kc

ka + kb − kc
2

)
, (5)

where I = {|ga − gb|, |ga − gb| + 2, . . . , ga + gb}.
In the more general situation where the two multivectors may not be homo-

geneous, the product distributivity mentioned in Eq. 3 leads to a double loop
over the respective grades of the two multivectors. Thus, the number of required
operations is the sum of all per-grade contributions, as described in Algorithm1.

The resulting multivector usually has a different grade from the two operands
used for its computation. For the outer product of homogeneous multivectors
C = A ∧ B, the grade of C will just be the sum of the grades of A and B.
For general multivectors, we again have to follow Eq. 3 to compute the set of
resulting grades. The geometric product is a bit more complex and can generate
a non-homogeneous multivector even from two homogeneous multivectors. The
resulting grades of a product between two general multivectors is summarised
in Algorithm 2. For more details about these results, the reader can refer to [2].
Note that K∧ or K∗ can return an empty set of grades (e.g. the wedge of d + 1
vectors in a d-dimensional vector space), then the computational cost is 0 since
the resulting product is also 0.

3 Optimal Parenthesising of Products

We show that the choice of the order of the product in an expression can affect
the complexity of the product. Consider, for example, the following expression
A1 ∧ A2 ∧ A3 in a 10-dimensional space, where the grade of each multivector is

grade(A1) = 4, grade(A2) = 3, grade(A3) = 2.

Optimal Parenthesizing of Geometric Algebra Products 495

There are in that case two possible parenthesisings, the left to right way as

(A1 ∧ A2) ∧ A3, (6)

and the right to left way:
A1 ∧ (A2 ∧ A3). (7)

In the first case, the product A1 ∧A2 of Eq. (6) generates a multivector of grade
7, that is finally wedged to A3. According to Eq. (4), the number of operations
for A1 ∧ A2 is 8400 and then 720 for the second outer product, leading to a
total of 9120 arithmetic operations. On the other hand, the first product A2 ∧
A3 of Eq. (7) generates a multivector of grade 5, that is wedged to A1. The
overall computational cost of this product is 5040 for the first product and
2520 for the second, resulting in 7560 arithmetic operations in total. Thus, in
this case, choosing the second way of parenthesising brings a 1.5 times gain in
terms of numerical operations. Obviously, the gain can be much higher for longer
expressions.

3.1 Expressions

Throughout this paper, we consider an expression as the products of n multi-
vectors:

A1 ∗ A2 ∗ · · · ∗ An, n ∈ N (8)

or
A1 ∧ A2 ∧ · · · ∧ An, n ∈ N. (9)

Algorithm 1: Number of arithmetic operations required for outer product
and geometric product of two general multivectors
1 Function P∧(KA, KB)

Input: KA: set of grades for the multivector A
KB : set of grades for the multivector B

Output: total number of arithmetic operations resulting from A ∧ B

2 return 2
∑

kA∈KA

∑

kB∈KB

(
d

ka + kb

)(
ka + kb

ka

)

3 Function P∗(KA, KB)
Input: KA: set of grades for the multivector A

KB : set of grades for the multivector B
Output: total number of arithmetic operations resulting from A ∗ B

4 return 2
∑

kA∈KA

∑

kB∈KB

∑

kc∈I

(
d

kc

)(
kc

ka − kb + kc
2

)(
d − kc

ka + kb − kc
2

)

496 S. Breuils et al.

Algorithm 2: Computation of the set of grades resulting to the product
of two multivectors.
1 Function K∧(KA, KB)

Input: KA: set of grades for the multivector A
KB : set of grades for the multivector B

Output: set of grades KC of the result of A ∧ B
2 KC = ∅

3 foreach ka ∈ KA do
4 foreach kb ∈ KB do
5 if ka + kb ≤ d then
6 KC = KC ∪ (ka + kb)

7 Function K∗(KA, KB)
Input: KA: set of grades for the multivector A

KB : set of grades for the multivector B
Output: set of grades KC of the result of A ∗ B

8 KC = ∅

9 foreach ka ∈ KA do
10 foreach kb ∈ KB do
11 foreach kc ∈ {|ka − kb|, |ka − kb| + 2, · · · , ka + kb} do
12 if kc ≤ d then
13 KC = KC ∪ kc

Since the outer product and the geometric product are binary operators, i.e.
operators between two operands, this overall computation involves the compu-
tation of intermediate results. Let A1,n be the chain of multivectors defined by
the expression to compute, and Ai,j(0 < i < j ≤ n) a sub-chain resulting from
the computation of the product from the multivector Ai to the multivector Aj .
The number of arithmetic operations resulting from the product of two succes-
sive multivector chains Ai,j and Aj+1,k is denoted by P�

i,j,k. where � can be
either ∧ or ∗.

3.2 Problem Formulation

Let Ci,j be the minimum number of arithmetic operations of the computation
(the cost to minimise) of the product between the ith multivector up to the jth

multivector. In the final result, we seek for the computation of C1n related to
the full expression. For i < j, this is equivalent to seek for

Ci,j = min
s∈[i,j−1]

Ci,s + Cs+1,j + P�
i,s,j . (10)

This optimal cost Ci,j will be used to define the optimal parenthesising indices
2D table S of size n × n, where Si,j = s (i < j) means that the expression

Optimal Parenthesizing of Geometric Algebra Products 497

Ai � Ai+1 � · · · � Aj should be parenthesised as

(Ai � · · · � As) � (As+1 � · · · � Aj). (11)

3.3 Minimisation

An easy way to achieve this minimisation is to use a recursive method. However,
such an approach will lead to multiple travels over the same recursive sub-trees,
resulting in an exponential complexity.

This kind of problems was already addressed for the matrix chain product, for
example in [1], by using dynamic programming. The problem is the computation
of the same sub-problems for different depth of recursion. The proposed approach
to solve it consists in memorising the solution to sub-problems in a bottom-up
scheme. Each sub-problem is uniquely identified by the two bounding indices
(i, j), in the computation of Ci,j , Si,j and Ki,j as 2D tables. These tables can
be iteratively filled with a bottom up approach.

We achieve our minimisation using the dynamic programming framework.
Our proposed method first considers the sub-chains of length one. They corre-
spond to single multivectors and thus take a cost Ci,i = 0, meaning no optimal
parenthesising index. The sub-chains of length two can also be directly com-
puted from Algorithms 1 and 2, where Ci,i+1 = P�

i,i,i+1 = P� (KAi
,KAi+1).

Obviously, Si,i+1 = i and Ki,i+1 = K�(KAi
,KAi+1). Then, the sub-chains of

length 3 can be computed from the sub-chains of length 2 using Eq. (10), and so
on. The resulting algorithm that computes the optimal parenthesising for each
sub-expressions is shown in Algorithm 3.

Once 2D table S is computed, the product can be optimally computed by a
recursive travel starting from S1,n, as shown in Algorithm 3. In case of a code
optimisation, a similar recursive scheme can be adopted to add the optimal
parenthesising on the code.

We remark that the complexity of this algorithm is not exponential but
polynomial in O(n3), see [1]. Note that in the matrix chain product context,
there exist some faster methods in O(n× log n), like [8] however, these methods
are complex to setup. Moreover, in geometric algebra, n is usually not high
enough to see a significant difference.

4 Discussion and Applications

It is not difficult to modify Algorithm 3 so that it computes the worst parenthesis
instead of the best, which in turn results in the maximum number of arithmetic
operations. We merely have to replace the sign ’<’ by ’>’ in line 19 of Algorithm 3
and to change the initialisation of Ci,j to 0 in line 16.

From these two algorithms, we can also extract the gain of the optimal paren-
thesis. The results we have, show that the maximum gain increases as n (the num-
ber of multivectors) increases. Moreover, the gain also increases as the dimension
increases. For a fixed number of multivectors in the expression, the gain becomes

498 S. Breuils et al.

Algorithm 3: Computation of the optimal parenthesising of a geometric
algebra associative product.
1 Function OptimalParenthesising

Input: A1, · · · , An: chain of general multivectors.
�: the considered associative product.

Output: Si,j : 2D optimal parenthesising index table.
// define a 2D cost table

2 C ← 2D table
// Sub-chain of length 1

3 for i ∈ [1, n] do
4 Ci,i = 0
5 Ki,i = grades(Ai)

// Sub-chain of length 2

6 for i ∈ [1, n − 1] do
7 Ci,i+1 = P�(

grades(Ai), grades(Ai+1)
)

// from Algo 1

8 Ki,i+1 = K�(
grades(Ai), grades(Ai+1)

)
// from Algo 2

9 Si,i+1 = i

// Grade of all sub-chains of length u > 2, starting at index i
10 for u ∈ [3, n] do
11 for i ∈ [1, n − u + 1] do
12 Ki,i+u = K �(Ki,i,Ki+1,i+u) // grade from any arbitrary cut

// For all possible length u > 2 of sub-chains

13 for u ∈ [3, n] do
// For all sub-chains of length u, starting at i

14 for i ∈ [1, n − u] do
15 j = i + u // sub-chain from i to j
16 Ci,j = ∞

// For all possible cut of the sub-chain

17 for s ∈ [i, j − 1] do
// compute the cost c of this cut with Eq. (10)

18 c = Ci,s + Cs+1,j+ P�(Ki,s,Ks+1,j)
// if the cost is better than before, update

19 if c < Ci,i+u then
20 Ci,j = c
21 Si,j = s

22 return S

23 First call: S =OptimalParenthesising(A1, · · · , An,�)

highest when the sum of the grades of the operands is near the dimension for
expressions where the outer product appears.

Furthermore, a practical usage of these kinds of algorithms is in code gen-
erators and optimizers. For example, the code developed from the expression of
Eq. (6) in the code generator Gaalop [4] results in more arithmetic operations

Optimal Parenthesizing of Geometric Algebra Products 499

Algorithm 4: Evaluation of the product A1 � A2 � · · · � An using the
optimal parenthesising.
1 Function ComputeProduct

Input: A1, · · · , An: chain of general multivectors,
S: optimal 2D parenthesising index table
i, j: resp. indices of the start and end of the sub-expression
�: the considered associative product

Output: result of the product.
2 if i=j then
3 return Ai

4 s = Si,j

// left side recursive call

5 A = ComputeProduct(A1, · · · , An, S, i, s, �)
// right side recursive call

6 B = ComputeProduct(A1, · · · , An, S, s + 1, j, �)
// do the product

7 return A � B

8 First call: Result = ComputeProduct(A1, · · · , An, S, 1, n, �)

than in the code generated from Eq. (7) arithmetic operations. Note that we con-
sider full multivectors for the three multivectors that appear in the expression.

5 Conclusion

In this paper, we focused on products of more than two multivectors and
addressed that there exists an optimal order in the evaluation of an expres-
sion. Then, we gave a dynamic programming algorithm that yields the optimal
product order in polynomial time. The benefits of this approach arise from the
product of three multivectors.

References

1. Aho, A.V., Hopcroft, J.E.: The design and analysis of computer algorithms. Pear-
son Education India (1974)

2. Breuils, S., Nozick, V., Sugimoto, A.: Computational aspects of geometric algebra
products of two homogeneous multivectors (2020). ArXiv abs/2002.11313

3. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric
algebra of R

9,6. Adv. Appl. Clifford Algebras 28(2), 35 (2018). https://doi.org/10.
1007/s00006-018-0851-1

4. Charrier, P., Klimek, M., Steinmetz, C., Hildenbrand, D.: Geometric algebra
enhanced precompiler for C++, OpenCL and Mathematica’s OpenCLLink. Adv.
Appl. Clifford Algebras 24(2), 613–630 (2014)

5. De Keninck, S., Dorst, L.: Geometric algebra levenberg-marquardt. In: Gavrilova,
M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS,
vol. 11542, pp. 511–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22514-8 51

https://doi.org/10.1007/s00006-018-0851-1
https://doi.org/10.1007/s00006-018-0851-1
https://doi.org/10.1007/978-3-030-22514-8_51
https://doi.org/10.1007/978-3-030-22514-8_51

500 S. Breuils et al.

6. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. An
Object-Oriented Approach to Geometry. Morgan Kaufmann, Burlington (2007)

7. Fontijne, D.: Efficient Implementation of Geometric Algebra. Ph.D. thesis, Univer-
sity of Amsterdam (2007)

8. Hu, T., Shing, M.: Computation of matrix chain products. Part I. SIAM J. Comput.
11(2), 362–373 (1982)

9. Kanatani, K.: Understanding Geometric Algebra: Hamilton, Grassmann, and Clif-
ford for Computer Vision and Graphics. A. K. Peters Ltd, Natick (2015)

10. Lasenby, J., Hadfield, H., Lasenby, A.: Calculating the rotor between conformal
objects. Adv. Appl. Clifford Algebras 29(5), 102 (2019). https://doi.org/10.1007/
s00006-019-1014-8

11. Perwass, C.: Geometric Algebra with Applications in Engineering, Geometry and
Computing, vol. 4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
540-89068-3

https://doi.org/10.1007/s00006-019-1014-8
https://doi.org/10.1007/s00006-019-1014-8
https://doi.org/10.1007/978-3-540-89068-3
https://doi.org/10.1007/978-3-540-89068-3

	Optimal Parenthesizing of Geometric Algebra Products
	1 Introduction
	1.1 Geometric Algebra Products
	1.2 Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Product of Two Multivectors

	3 Optimal Parenthesising of Products
	3.1 Expressions
	3.2 Problem Formulation
	3.3 Minimisation

	4 Discussion and Applications
	5 Conclusion
	References

