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Abstract

Amount and variety of training data drastically affect the

performance of CNNs. Thus, annotation methods are be-

coming more and more critical to collect data efficiently.

In this paper, we propose a simple yet efficient Interactive

Self-Annotation framework to cut down both time and hu-

man labor cost for video object bounding box annotation.

Our method is based on recurrent self-supervised learning

and consists of two processes: automatic process and inter-

active process, where the automatic process aims to build a

supported detector to speed up the interactive process. In

the Automatic Recurrent Annotation, we let an off-the-shelf

detector watch unlabeled videos repeatedly to reinforce it-

self automatically. At each iteration, we utilize the trained

model from the previous iteration to generate better pseudo

ground-truth bounding boxes than those at the previous it-

eration, recurrently improving self-supervised training the

detector. In the Interactive Recurrent Annotation, we tackle

the human-in-the-loop annotation scenario where the de-

tector receives feedback from the human annotator. To this

end, we propose a novel Hierarchical Correction module,

where the annotated frame-distance binarizedly decreases

at each time step, to utilize the strength of CNN for neigh-

bor frames. Experimental results on various video datasets

demonstrate the advantages of the proposed framework in

generating high-quality annotations while reducing anno-

tation time and human labor costs.

1. Introduction

Deep learning methods require a large amount of train-

ing data with ground truth, although developments of deep

learning bring benefits to a wide range of practical appli-
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Figure 1. Our self-supervised learning based Interactive Self-

Annotation framework for video object bounding box annotation

consists of Automatic Recurrent Annotation, the supported pro-

cess, and Interactive Recurrent Annotation, the main process.

cations such as autonomous vehicle [10], anomaly detec-

tion [25], object tracking [44], object detection [39], scene

understanding [20], and trajectory prediction [32]. The rea-

son is that the amount and variety of training data dras-

tically affect the performance of convolutional neural net-

works (CNNs). In the domain of autonomous driving and

intelligent transportation systems, localizing all moving ve-

hicles and persons on street scenes is crucial. To achieve

this goal, providing ground-truth bounding boxes is essen-

tial for training and evaluating the performance of CNNs.

Especially, video-related tasks [25, 32, 39] require a huge

number of object annotations, namely, ground-truth bound-

ing boxes of objects.

Manually collecting object annotations is a time-

consuming task. This becomes tedious when the target size

is small, or the target is partly occluded in crowed scenes,

which usually happens on street scenes. Indeed, drawing

high-quality bounding boxes is extremely time-consuming,

which typically requires annotators to spend around 50-

80 seconds for each object [33] using Amazon Mechanical

Turk (AMT) platform. Hence, it is essential for the develop-

ment of effective annotation frameworks to generate desired

ground-truth bounding boxes for large-scale video datasets.

In this paper, we propose a simple yet efficient In-
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teractive Self-Annotation (ISA) framework based on self-

supervised learning to generate ground-truth bounding

boxes for video objects. Our method can cut down both

annotation time and human labor costs. The generated

ground-truth information can be used for various tasks re-

lated to video objects. Our ISA framework consists of

two recurrent annotation processes, i.e., Automatic Recur-

rent Annotation (ARA) and Interactive Recurrent Annota-

tion (IRA), where ARA aims to build a supported detector

for IRA. Each of these recurrent annotation processes aims

to solve the data-detector problem in a learning loop: us-

ing the detector to update data and vice versa to improve

both gradually. In the supported process ARA, we let an

off-the-shelf detector watch unlabeled videos repeatedly to

reinforce itself automatically. At each iteration, we intro-

duce Labeling Assistant module to leverage both spatial in-

formation from a detector, which is trained from the previ-

ous iteration, and temporal consistency from tracking meth-

ods to select new pseudo ground-truth bounding boxes for

self-supervised fine-tuning the detector. The new pseudo

ground-truth bounding boxes have better quality than ones

at the previous iteration, leading to improvement in train-

ing the detector. Meanwhile, the main process IRA tack-

les the human-in-the-loop annotation scenario, where feed-

back from the human annotator is utilized for training the

detector, by incorporating human guidance into the auto-

matic process. We propose a novel Hierarchical Correction

module, where the annotated frame-distance binarizedly de-

creases at each time step, to utilize the strength of CNN for

neighbor frames. The correction from the annotator is fed

into training the detector for the next iteration to guide the

detector back to the right track effectively. Extensive exper-

iments on various video datasets confirm that our proposed

framework has the ability to generate high-quality annota-

tions while cutting down both annotation time and human

labor costs.

The overall contribution of this paper is three-fold:

• We propose Interactive Recurrent Annotation (IRA)

to allow a human annotator to easily interfere in the

interaction-learning loop. Mistakes from a detector are

corrected to guide the detector back to the right track

at the next iteration. Our introduced Hierarchical Cor-

rection, in which the annotated frame-distance bina-

rizedly decreases at each time step, is more efficient

than the standard frame-by-frame annotation, resulting

in the faster interactive annotation.

• We propose Automatic Recurrent Annotation (ARA)

to support the main process IRA. In ARA, both spatial

information from the trained detector from the previ-

ous iteration, and temporal consistency from tracking

methods are leveraged to train the detector for the next

iteration. Through the self-supervised learning on un-

labeled videos, the detector can improve itself to gen-

erate higher quality of ground-truth bounding boxes

gradually. The detector output from this process is

used as an initial detector for the IRA process.

• We introduce a new metric, called Similarity in Union

(SIU), to evaluate the task of object annotation. Our

metric can be used to evaluate both bounding box and

mask of objects.

The source code and annotated ground-truth of the

datasets used in the experiments are publicly available on

our project page. 1

The remainder of this paper is organized as follows. In

Section 2, we briefly review the related work. Next, our

proposed framework is presented in Section 3. Experimen-

tal results are then reported and discussed in Section 4. Fi-

nally, Section 5 draws the conclusion and paves the way for

future work.

2. Related Work

2.1. Video Object Annotation Tools

Considering the importance of ground-truth generation,

we briefly review available video object annotation tools by

the time order to show the evolution of the tools. ViPER

(2000) [8] is an interface for manually annotating bound-

ing boxes frame-by-frame, in which labels can be prop-

agated in straightforward, consistent video frames, but it

cannot deal with time-varying. LableME [28] is a popu-

lar web-based tool for annotating arbitrary shapes of an ob-

ject, which has two versions: LableME-Image (2008) [28]

for only image annotation, and LableME-Video (2009) [43]

for video sequence annotation. VATIC (2013) [37], an on-

line crowdsourcing video annotation tool of Amazon’s Me-

chanical Turk, was developed to replace LableME-Video

with better tracking and interpolation algorithms. Von-

drick et al.[37] also designed a video annotation platform

to annotate object bounding boxes using tracking. JAABA

(2013) [15] is a semi-automated tool taking already anno-

tated trajectories as input for labeling animal behaviors over

video frames. iVAT (2015) [3], an interactive tool devel-

oped from VATIC, integrated computer vision algorithms

working in an interactive and incremental learning frame-

work to improve label propagation. ViTBAT (2016) [4]

allows to annotates both individual-target and group-target

objects. CVAT (2019) [29] has recently integrated super-

vised machine learning techniques to support interaction,

and interpolation effectively for different tasks.

Although these tools support tracking algorithms, the

human annotator is required to input the initial label of

the target object manually, and then each object is tracked

throughout its lifetime. On the other hand, our method can

generate initial bounding boxes automatically, resulting in

saving annotation time. CVAT (2019) [29] also can gener-

1https://sites.google.com/view/ltnghia/research/video self annotation
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Figure 2. Pipeline of Automatic Recurrent Annotation based on

self-supervised learning. The detector recurrently reinforce itself

when watching unlabeled videos repeatedly.

ate initial labels automatically but from a fixed pre-trained

model, thus it does not have the ability to adapt to new do-

mains. Meanwhile, our proposed method learns contex-

tual information from new unlabeled videos to adapt the

detector to new domains. In addition, our method shows

more advantages than existing tools through an interaction-

learning loop. In this human-in-loop, our method suggests

the human annotator correct key-frames and then learns

these frames to better transfer labels to other video frames,

resulting in cutting down annotation time.

2.2. Pseudo Data Based Learning
Amount and variety of training data drastically affect the

performance of deep networks; thus, these methods always

require a large number of training data. Due to the lim-

ited number of available training data, different methods

have been proposed to generate pseudo data to train deep

networks. Almost existing methods generate pseudo data

from the real data and then combine all together to train net-

works. This approach is usually applied to solve one-shot

learning problem in which semi-supervised video object

segmentation methods [12, 34, 38] are trained from only

the first video frame with given ground-truth. The standard

method is to generate a large number of augmented data by

transforming the labeled objects and then combining them

with different background images [16, 35]. To forecast

pedestrian trajectories, Olly et al. [32] jointly trained net-

works, using both human-annotated and machine-annotated

bounding boxes, which generated by a pedestrian detection

and tracking method. Miriam et al. [2] first trained an anno-

tation network on real data to generate pseudo labels from

unlabeled images and then combined both real and pseudo

data to train the primary network for the task of semantic

and instance segmentation. RoyChowdhury et al. [27] com-

bined detection and tracking methods to generate pseudo la-

bels for the target domain, and then combine them with ex-

isting labels from the source domain to adapt the trained de-

tection network to new domains. On the other hand, Singh

et al. [31] used motion cues to learn high precision object

proposals and then trained a detection network on these pro-

posals.

Mixing pseudo data with human-annotated data can help

to train deep networks better thanks to the increasing num-

ber of training data, but this approach needs a certain num-

ber of given real data to generate pseudo data. In this paper,

we solve this problem through a two-phase framework. In

the first phase, we synthesize pseudo data through a self-

supervised process by letting a detector watch a number

of unlabeled videos repeatedly to reinforce itself automati-

cally. In the second process, we incorporate human interac-

tion to correct mistakes from the detector to guide the de-

tector work on the right track recurrently.

3. Proposed Method

Figure 1 illustrates an overview of our proposed Inter-

active Self-Annotation (ISA) framework for video object

bounding box annotation. The proposed framework con-

sists of a supported process and a main process, namely

Automatic Recurrent Annotation (ARA) and Interactive Re-

current Annotation (IRA), respectively. In the main process

IRA, a human annotator interacts with a detector trained

from the supported process ARA to speed up the interactive

annotation.

3.1. Automatic Recurrent Annotation

3.1.1 Overview

Our goal is to generate bounding boxes for all objects in

videos by letting a detector watch unlabeled videos repeat-

edly. At each iteration, both spatial information and tem-

poral consistency in the videos are leveraged to train the

detector at the next iteration. Through the self-supervised

learning, the detector can improve itself automatically. This

self-supervised learning can be applied to a group of videos,

which have similar properties such as day/night, weather,

and landscape, etc. In this way, the detector can learn shared

information between similar videos to perform better. Our

annotation method also can be used as an unsupervised de-

tection method for domain adaptation.

Figure 2 illustrates the pipeline of our proposed Au-

tomatic Recurrent Annotation (ARA). At each iteration,

the detector trained from the previous iteration generates

bounding boxes for all videos. After that, we introduce the

Labeling Assistant module to leverage temporal consistency

from the videos to filter out these bounding boxes, resulting

in new pseudo ground-truth bounding boxes for fine-tuning

the detector again. The new pseudo ground-truth bounding

boxes have better quality than ones at the previous iteration,

which leads to improvement in training the detector for the

next iteration.

3.1.2 Labeling Assistant

We aim to construct pseudo ground-truth bounding boxes

to train a new detector at each iteration. We adopt the idea

of RoyChowdhury et al. [27] that utilizes tracking algo-

rithms to reinforce detection results with modification and
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Figure 3. Pipeline of our Labeling Assistant module. Each dot is a

detection result in the entire video. We first eliminate objects with

low accuracy score and keep only high confident objects. After

that, tubelets are constructed to remove all unstable objects with

short temporal length. Remained objects in a tubelet are then as-

signed a unique label. Finally, we recover accidentally deleted

objects as well as add miss-detected objects by the detector.

Figure 4. Visualization of Labeling Assistant module on a video

sequence. From top to bottom, bounding boxes generated from

the detector, high confident bounding boxes after thresholding,

and pseudo ground-truth computed from our Labeling Assistant in

this order. Labeling Assistant can remove noise detection, recover

missing detection, and correct wrong labels by utilizing temporal

motion in the video sequence.

improvement. We extend their method (Section 3.1 of [27]),

which is proposed for a single category, to work with mul-

tiple categories. Figure 3 show our proposed Labeling As-

sistant module, which can select good bounding boxes from

results generated by the trained detector from the previous

iteration.

We first apply a confident threshold τs to eliminate ob-

jects with low accuracy score and keep only high confi-

dent objects. After that, frame-wise detections are associ-

ated across frames using a real-time tracking-by-detection

method, namely DeepSort tracker [40], to create a series of

bounding boxes with tracking identifies, namely tubelets,

for each video. Objects, which are too small to track, are

eliminated. We then remove all unstable tubelets, which

have temporal length less than τt frames. We note that

tracked objects in a tubelet can be at consistent frames or

inconsistent frames. Remained objects in a tubelet are as-

signed a unique label, which has the largest total confident

scores:

l̂ = argmax
l∈L

∑

i∈tubelet

w
(l)
i
, (1)

Labeling 

Assistant
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New Detector

Generate 

Bounding Boxes
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Initial 
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Figure 5. Pipeline of Interactive Recurrent Annotation process.

where L is the list of labels, and w denotes the detection

accuracy of each object in the tubelet. Through this process,

we can remove a large number of noise in the generated

bounding boxes.

However, detected objects can be eliminated mistakenly

during noise elimination. We aim to recover accidentally

deleted objects as well as add miss-detected objects by the

detector by expanding the set of detected objects of each

tubelet in two directions, i.e., the next frames and the previ-

ous frames. Particularly, for each tubelet, we track the ob-

jects at the border of inconsistent frames towards the corre-

sponding direction, using the SiamDW tracker [44], which

can run in real-time. The tracker stops when IOU of the

tracked box and ones at the neighbor frame less than the

threshold τiou. Figure 4 illustrates examples of our pro-

posed Labeling Assistant.

3.2. Interactive Recurrent Annotation

3.2.1 Overview

We aim to address the human-in-the-loop annotation sce-

nario where the detector receives guidance from the human

annotator to run on the right track. In this paper, we pro-

pose an Interactive Recurrent Annotation (IRA) (cf. Fig. 5),

which leverages strengths of both ARA process and human

annotator’s guidance, resulting in low annotation cost. The

main advantage of our method is that it allows a human an-

notator to easily interfere at any time if a mistake occurs.

In particular, at each iteration, the human annotator has the

possibility to correct wrong or missed detections, producing

as accurate bounding boxes as desired by the human anno-

tator. The correction is then fed back to the detector through

self-supervised training, effectively helping the detector to

get back to the right track.

3.2.2 Hierarchical Correction

We observe that the detector can perform at neighbor frames

of trained frames with the same efficiency due to their simi-

larity. Hence, to utilize the strength of the detector at neigh-

bor frames, we propose a novel Hierarchical Correction

module. Instead of correcting video frame sequentially, we

propose correcting fixed key-frames, in which the frame-

distance binarizedly decreases at each time step. The frame-

distance Dk at iteration k is defined as Dk =
⌊

Dk−1

2

⌋
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where D0 is the initial frame-distance. Human annota-

tor easily interferes to correct mistakes at frame i, where

(i mod Dk) = 0. The correction is then propagated to the

next frame i+Dk, using SiamDW tracker [44].

After that, the correction of key-frames is fed back to

train the detector for the next iteration to effectively guide

the detector back to the right track. It guarantees for obtain-

ing high-quality annotations while minimizing annotation

time. Our Hierarchical Correction is more efficient than the

standard frame-by-frame annotation, resulting in the faster

interactive annotation.

4. Experimental Results

4.1. Implementation

All experiments were conducted on a computer with a

Core i7 3.6 GHz processor, 64 GB of RAM, and two GTX

1080ti GPUs. We implement the code with Python and Py-

Torch.

For our detector, Faster R-CNN2 [26] was adopted

with several modifications. We applied Group Normaliza-

tion [41] architecture, which uses ResNet-50 [11] based

Feature Pyramid Network [21] (FPN) backbone. We also

replaced the original ROI Pooling [26] by Precise RoI Pool-

ing [13] to extract stronger FPN features from detected re-

gions of interest (ROIs). Focal Loss [22] was applied to

train Region Proposal Network [26] (RPN).

To train detectors, we used the Stochastic Gradient De-

scent (SGD) optimizer [5] with a moment of 0.9 and a

weight decay of 0.0001. We trained our models with a batch

size of 8. To obtain the pre-trained model, we trained our

customized Faster R-CNN on MS-COCO [23] BDD [42]

datasets with two schedules and the base learning rate of

0.02. During annotation processes (both ARA and IRA),

detectors were fine-tuned on 0.5 schedules with the base

learning rate of 0.002. At each training schedule, the model

was trained on 25 epochs, and the base learning rate was

divided by 10 at 8th, 11th, 16th epochs.

For the ARA process, we repeated the automatic process

in 3 iterations and practically set thresholds of Labeling As-

sistant as follow: τs = 0.85, τt = 5, and τiou = 0.3. For

the IRA process, the initial frame-distance D0 of Hierar-

chical Correction is adaptively set based on the length of

the video (T frames) to balance processing time and per-

formance: for short videos, D0 = T

12 where T ≤ 100; for

medium videos, D0 = T

24 where 100 < T < 1000; for long

videos, D0 = T

48 where T ≥ 1000.

In this paper, we focus on annotation for challenging

tasks of autonomous driving and intelligent transportation

system, thus we evaluated the proposed framework on

large-scale road object datasets (e.g. CityScapes [7] and

2https://github.com/facebookresearch/

maskrcnn-benchmark

(a)

AP = 0.5, SIU = 0.3 

(b)

AP = 0.5, SIU = 0.7, IOU=0.8 

(c)

SIU = 0.5, IOU=0.8 

Figure 6. Our Similarity In Union (SIU) shows advantages against

Average Precision (AP) and Intersection Over Union (IOU) in

the task of annotation. Yellow bounding boxes are ground-truth

and blue bounding boxes are detection results. From (a) and (b),

AP cannot evaluate noise detection while SIU can. From (b) and

(c), IOU cannot evaluate confident scores and overlapping regions

while SIU can.

DAD [6] datasets). We used seven popular object categories

of moving objects on road, including pedestrian, rider, car,

truck, bus, motorbike, and bicycle.

4.2. Evaluation Metric

Detection related metrics (i.e., Average Precision

(AP) [9] and Average Best Overlap [36]) only focus on ob-

jects of interest without concerning the background. They

ignore all noise detection, where detected bounding boxes

do not touch ground-truth ones. Hence, these metrics are

not appropriate to evaluate the task of annotation, which

considers the global context. On the other hand, we observe

that segmentation tasks (i.e., semantic segmentation [30],

salient object segmentation [19, 17], camouflaged object

segmentation [18]) always consider the whole scene, in-

cluding both foreground (e.g., objects of interest) and back-

ground (e.g., noise detection). Hence, we leverage proper-

ties of segmentation to propose a new metric based on In-

tersection Over Union (IOU) to evaluate the task of object

annotation.

We first convert all detection of an image to a heatmap

of each category by accumulating the prediction score of

each object region (i.e., bounding box or mask). Let P (c)

and Q(c) denote heatmaps of prediction and ground-truth,

respectively, of category c ∈ C, where C is all categories in

the dataset. We introduce a new metric, namely Similarity

In Union (SIU), to evaluate the similarity of two normalized

heatmaps:

SIU
(c)

= 1−

∑
i∈P (c)∪Q(c) |P

(c)
i −Q

(c)
i |

|P (c) ∪Q(c)|
(2)

Differently from Mean Absolute Error [1], which mea-

sures the difference of all pixels regardless of whether they

do not belong to both prediction and ground-truth regions,

our SIU skips these regions and measures only regions in-

side the union of prediction and ground-truth. We also note

that IOU is a special case of our SIU, in which heatmaps

are binary masks with only two values 0 and 1. Figure 6

illustrates the advantage of our SIU against AP and IOU.
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Figure 7. Experimental results on the Cityscapes [7] dataset using different metrics (mSIU and mIOU in the order from left to right). The

processing time includes training adaptation methods and excludes training baseline. Our method, shown in blue, is converged after three

iterations in both mSIU and mIOU.

Table 1. Detection results of Automatic Recurrent Annotation (ARA) on the Cityscapes [7] dataset.

Method Mean Pedestrian Rider Car Truck Bus Motorbike Bicycle

Similarity In Union mSIU SIU

Baseline (Pre-trained model) 67.0 74.2 63.9 83.9 66.1 55.7 69.4 55.8

ARA (1 Iteration) 72.5 65.1 67.6 83.0 74.0 73.6 85.4 58.4

ARA (2 Iterations) 74.5 61.5 67.6 79.1 84.9 85.7 85.9 56.8

ARA (3 Iterations) 74.6 59.8 67.4 75.4 85.0 87.7 85.9 60.9

Intersection Over Union mIOU IOU

Baseline (Pre-trained model) 28.1 15.4 55.8 20.1 1.6 4.3 66.4 33.4

ARA (1 Iteration) 56.6 36.2 65.5 37.2 71.5 68.0 84.7 32.8

ARA (2 Iterations) 68.5 47.1 66.8 66.4 84.6 84.8 85.2 44.6

ARA (3 Iterations) 73.2 55.0 67.3 76.8 84.8 87.3 85.4 55.6

Table 2. Ablation study on Cityscapes [7] dataset. Our method is

shown in blue.

Method mSIU mIOU

Without Labeling Assistant 57.3 34.1

Only thresholding 73.6 69.5

With Labeling Assistant 74.6 73.2

For multiple categories evaluation, SIU is averaged

across categories, yielding the mean Similarity In Union

(mSIU): mSIU =
∑

c∈C
SIU (c).

4.3. Automatic Annotation Evaluation

We evaluated our automatic process (ARA) on the

CityScapes [7] dataset. We used video sequences of the val-

idation set, which consists of 500 sequences with a total of

15,000 video frames (each video sequence has 30 frames)

from three cities in Europe (e.g., Frankfurt, Lindau, and

Munster). The dataset has ground-truth at 20th frame of

each sequence. In addition to our introduced SIU, we also

evaluate methods using IOU when binarizing heatmaps by

assigning 1 for pixels whose values are larger than 0. Sim-

ilarly to mSIU, mean Intersection Over Union (mIOU) is

also averaged across all categories.

Iterations in The Loop. We study the ability of self-

supervised learning of our ARA process in the loop by

increasing the number of iterations. Figure 7 shows that

detection results are converged from the third iteration, in

Table 3. Interaction results on the DAD [6] dataset in terms of

annotation time for a video frame and the ratio of correction by

human annotator. Our method is shown in blue.

Method
Annotation

Time (Second)

Ratio of

Corrected Frames

Ratio of

Corrected Objects

Manual 174 100% 100%

Pre-train+ 129 100% 66.6%

ARA+ 74 100% 45.7%

IRA 47 83.3% 61.3%

ISA 19 66.7% 35.9%

which both mSIU and mIOU are around 74%. Hence, we

stop the loop at the third iteration to balance processing

time and performance. After the convergence, our ARA

process achieves mSIU and mIOU in 74.6% and 73.2%, re-

spectively. We also show the improvement of each category

over the iterations in Table 1. Figure 8 visualizes the results

of the ARA process on the CityScapes dataset.

Cross-Domain Evaluation. To measure the ability of

our method in annotation, we performed the cross-domain

evaluation for different methods. We consider the pre-

trained model on the BDD dataset [42] as the baseline (de-

noted by Baseline). From this baseline model, we apply

different methods to adapt domain from the BDD dataset to

the CityScapes dataset, such as: Training CycleGAN [45] to

transfer BDD-style images to Cityscapes-style images (de-

noted by Baseline + CycleGAN); Generating pseudo data

by combining tracking and detection on the CityScapes
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Figure 8. Visualization of some results by our ARA process on the CityScapes dataset. From left to right, original video frames with

ground-truth are followed by results of our ARA process, respectively.

dataset for detector self-learning [27] (denoted by Baseline

+ Self-learning). For CycleGan [45], we used the published

code provided by authors3. For self-learning [27], we re-

implemented the method due to the unavailable published

source code.

Figure 7 shows that our method outperforms other meth-

ods on all metrics. CycleGAN works only on small or

medium resolution images while CityScapes videos have

large resolution, leading to the reduction in the perfor-

mance. Although our Labeling Assistant and label refine-

ment of Baseline + Self-learning[27] share the same idea,

implemented processes are different. Particularly, in our

Labeling Assistant, after linking confident objects using

[40], we remove short tubelets first, then assign a unique la-

bel for each tubelet, and finally extend tubelets using [44].

Meanwhile, in label refinement [27], after linking confident

objects using [14], they extend tubelets using [24], and then

remove short tubelets without considering label of objects

(see Section 3.1 of [27]). The process of [27] causes many

noise detection existing in training detector and duplicated

objects having different labels. Hence, our ARA even using

only one iteration outperforms Baseline + Self-learning[27]

3https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

(72.5% and 68.5% of mSIU; 56.6% and 34.1% of mIOU,

respectively).

Effect of Labeling Assistant. We investigate the effec-

tiveness of the Labeling Assistant module by comparing our

method against without using Labeling Assistant and ap-

plying only threshold to remove low confident objects. Ta-

ble 2 shows the out-performance of our Labeling Assistant

against other methods on all metrics. Some visualization

results of Labeling Assistant are shown in Fig. 4.

4.4. Interactive Annotation Evaluation
We evaluated our proposed framework on the Dashcam

Accident [6] (DAD) dataset. We used raw video sequences

of the accident set, which consists of 620 sequences with a

total of 62,000 video frames (each video sequence has 100

frames) from cities in Taiwan. We re-annotated all objects

on all video frames, which have not been done in the pub-

lished ground-truth. The link to our new ground-truth will

be available along with the publication of this paper.

We evaluated our proposed framework ISA against other

annotation methods such as: Manual annotation of all ob-

jects frame-by-frame; Using the pre-trained model to gen-

erate bounding boxes and then manually correct frames

(denoted by Pre-train+); Correcting mistakes sequentially

from results generated by ARA (denoted by ARA+); and
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Figure 9. Visualization of some results by our ARA process and ISA framework on the DAD dataset in the order from left to right.

IRA directly using the pre-trained model as the initial detec-

tor. Table 3 illustrates experimental results.

Overall Evaluation. Experimental results in Table 3

shows that our proposed ISA framework is 9× faster than

manual annotation, that are 19 and 174 seconds to annotate

a video frame, respectively. Particularly, the supported pro-

cess ARA takes 4 seconds, in which training networks takes

3 seconds; and the main process IRA takes 15 seconds. In

addition, our ISA is 6.8× faster than annotating directly

from the pre-trained model (19 seconds of ISA compared

with 129 seconds of Pre-train+). Our ISA also cuts down

the most human labor cost in terms of both the number of

corrected frames (66.7%) and the number of corrected ob-

jects (35.9%). Our method minimizes both annotation time

and human labor costs rather than the standard annotation

method. Figure 9 illustrates the results of our ISA frame-

work.

Effect of ARA Process. Our ISA, using the supported

detector from ARA, is 2.5× faster than IRA alone, which

directly uses the pre-trained model as the initial detector (19

seconds and 47 seconds respectively). Integrating the ARA

process also help ISA reduce the ratio of objects needing to

be corrected by human annotator to 25.4% (from 61.3% to

35.9%). Furthermore, even not using our ISA framework

but manually correcting results from the initial detector di-

rectly, ARA also speeds up the process 1.7 times and saves

20.9% number of corrected objects (comparing ARA+ and

Pre-train+). This shows that the importance of our ARA

process in training a robust model for video object annota-

tion.

Effect of IRA Process. Our ISA framework is 3.9×
faster than ARA+, which does not integrate the IRA pro-

cess. ISA takes only 19 seconds to annotate a video frame;

meanwhile, ARA+ takes up to 74 seconds. By apply-

ing Hierarchical Correction, the IRA process also reduces

the number of corrected frames to 66.6% by utilizing the

strength of CNN and feedback from human annotator, com-

paring with correcting all video frames of ARA+. This

highlights the impact of our IRA process in the interactive

annotation.

5. Conclusion

In this paper, we proposed an Interactive Self-Annotation

framework to minimize time and human labor costs to an-

notate bounding box of video objects. Our framework con-

sists of two annotation processes: Automatic Recurrent An-

notation, in which we let a detector watch unlabeled videos

repeatedly to reinforce itself automatically, and Interactive

Recurrent Annotation, which smoothly incorporates inter-

active correction from a human annotator in the loop to

gradually improve the detector. We believe that our annota-

tion framework will promote generating high-quality anno-

tations while cutting down annotation time. We aim to con-

sider annotating both bounding boxes and masks of video

objects in the near future.
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