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Abstract. Geometric algebra has become popularly used in applica-
tions dealing with geometry. This framework allows us to reformulate
and redefine problems involving geometric transformations in a more
intuitive and general way. In this paper, we focus on 2D bijective dig-
itized reflections and rotations. After defining the digitization through
geometric algebra, we characterize the set of bijective digitized reflec-
tions in the plane. We derive new bijective digitized rotations as compo-
sitions of bijective digitized reflections since any rotation is represented
as the composition of two reflections. We also compare them with those
obtained through geometric transformations by computing their distri-
butions.

1 Introduction

Bijectivity of digitized rotations in two and three dimensions has been stud-
ied. Its characterization was initiated by the work on two-dimensional rotations
followed by a digitized operator in the square grid [8,9]. It was then shown
in [12] that an arithmetic proof of the characterization is provided through Gaus-
sian integers. Similar arithmetic characterization on the hexagonal grid was also
shown using the Eisenstein integers [11]. Concerning digitized rotations in the
space, using the Lipschitz quaternions [7] allows to verify the bijectivity of a
given digitized rotation [10]. A bijective reflection algorithm over the plane, on
the other hand, was proposed in [3] where the line of reflection is digitized.

These arithmetic approaches using algebraic numbers are intuitive and conve-
nient for providing the proofs of the characterization/certification of the bijective
digitized rotations. However, each algebraic number provides different operations
and definitions, so that they cause the lack of generality and extensibility. In con-
trast, geometric algebra is designed to retain generality and offer operators that
are capable of computing considered geometric transformations for any geomet-
ric objects of the algebra in any dimension. This algebra was defined thanks to
the work of Clifford [4] to unify and generalize Grassmann algebra and Hamil-
ton’s quaternion into a whole algebra. Geometric algebra is a framework that
encompasses both quaternion algebra and complex numbers and extends rigid
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transformations of geometric objects to higher dimensions by expressing them
as composition of reflections. We therefore consider that geometric algebra is a
natural tool for reasoning with both digitized reflections and rotations.

In order to exploit the generality and extensibility of geometric algebra for
tackling digital geometry problems, we first formulate digitization of reflections
and rotations in n dimensions using geometric algebra. We then focus on two
dimensions and study bijectivity of digitized reflections. We then show that
composition of bijective digitized reflections results in new bijective digitized
rotations, allowing us to approximate any digitized rotation by bijective digitized
rotations.

2 Reflections and Rotations via Geometric Algebra

Geometric algebra of a vector space is an algebra over a field such that its
multiplication called geometric product is defined on a space of elements, i.e.,
multivectors [6]. Geometric algebra is an intuitive and geometric object-oriented
algebra that allows to define geometric transformations in an efficient way. Def-
initions and compositions of geometric transformations are given through geo-
metric products which are invertible. Let us briefly review geometric product
rules.

2.1 Geometric Product

Given two vectors m, n, the geometric product is defined as
mn=m-n-+mAn, (1)

where m-n = ||m||||n|| cos(a) and mAn = ||m||||n|| sin(a)I with angle a between
m and n, and I as the bivector basis spanned by m and n. Briefly, a bivector (or
2-vector) is an element of the algebra different from a scalar and a vector such
that it geometrically represents an oriented area spanned by two vectors. Here
the bivector I represents the unit oriented area element of the plane spanned by
the vectors m and n.

Letting d be the dimension of the vector space, the geometric product acts
on the basis vectors e;, e; and basis bivectors e;; (4,7 € [1,d]) as follows:

e e”klfj#k',Z?ék'
ee; = L ifi= J and e;jje, =< € ifj=k . (2)
—e;; otherwise e ifi—k
y =

If we permute e;, and e;;, the above multiplication becomes

€Lij lf]#k,l#k
ee;j =14 —e; if j=k ) (3)
ej ifi==k
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Given a vector x defined as the weighted sum of components over the basis vec-
tors, namely, x = > ., ,u;e; the norm of x is defined as ||x| = /x-x =

Zi:l,...,d u2. Then, by definition, the inverse of x is defined as x~! = i =

W = 7=. The geometric product is invertible. In addition, the geometric prod-

uct is associative and distributive over the addition but not commutative. The
inner product results in a scalar. Namely, for given e;, e;

C(1ifi=j
€i € = {0 otherwise. (4)

2.2 Reflections

A reflection is the isometric mapping from R™ to itself with a hyperplane as a set
of fixed (invariant) points. It is defined as follows with geometric algebra when
the hyperplane goes through the origin.

Definition 1. Given a hyperplane passing through the origin, with its normal
vector m € RY, denoted by H(m), the reflection of point x € R™ with respect to
H(m) is defined as

um™ . R? - R4

X — —mxm ! = — L _mxm.
[lm]|2

Reflections U™ are said rational if all the components of m are rational. Note
that any rational reflection 4™ can be represented by m = 21:1--- 4 Wi€; such
that u; € Z and ged(ug, -+ ,uq) = 1.

2.3 Rotations

Any rotation is expressed as the composition of two reflections with geometric
algebra. If a first reflection w.r.t. H(m) followed by a second reflection w.r.t.
H(n), is applied to point x € RY, we have point x’ such that

x' = —n(-mxm~Yn~! = (nm)x(nm)~!. (5)
In other words, x’ is the rotation of x around the intersection of m and n. Indeed,
assuming n and m are both normalized, we have

x" = (cos ¢ + sin ¢ I)x(cos ¢ — sin ¢ ), (6)

where ¢ is the angle between n and m in the rotation plane whose bivector is I
(cf. Eq. (1)). Note that the angle of this rotation corresponds to 2¢.

More generally, the algebraic entity representing the rotation of angle 6 in
the rotation plane whose bivector is I is defined as
01

0
@ = cos = +sin —

3 XTI (7)
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Then, a point x is rotated to x’ as follows:
x' = QxQ, (®)

where Qf = cos(%) — sin gﬁ Note that I = e in the 2D case.
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Fig. 1. (a) shows the set of points (denoted with small black point) in the digital square
grid Ze; ® Zes (also denoted by Z?). Such points are obtained as linear combinations
of the basis vectors e; and ez illustrated with red arrow. (b) shows digitization cells
associated to the square grid using gray dashed square. The red hatched square denote
the digitization cell associated with the origin or C(0); the border of C(0) is denoted
with red circle. (Color figure online)

3 Digitized Reflections

In order to define digitized reflection, we need to define the grid to digitize points.

3.1 Cubic Grids

In a similar way as the state-of-the-art, we denote the set of vectors of geometric
algebra in the space with real coordinates as

Rd:{X: Z uiei|ui€R}.
i=1,...,d
Those with integer coordinates are called the cubic grid or the integer lattice in
RY, defined as
Zd:{x: Z aiei|ai€Z}.
i=1,...,d

This cubic grid is also written as 7 = @i=1,....aZe;. An illustration of such a
cubic grid in the plane is given in Fig. la.

By extension, any square grid generated by two orthogonal vectors, ue; +ves
and —ve; + uesq, in the plane is defined as:

Z(uey + veg) ® Z(—ve; + uesz). 9)
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3.2 Digitization of Reflections

A digitized reflection is a reflection followed by a digitization. Let us consider
reflections of points in Z<.

As U™ (Z4) ¢ Z% in general, we need to define the digitization operator again
on the cubic grid in order to obtain digitized reflection points. To this end, we
first define digitization cells of the cubic grid Z<.

Definition 2. For any k € Z%, we define the digitization cell of k as

C(k):={xeR|Vie[l,d] |x—&| <|x—r+e
and ||x — k&l < ||lx — fs—ei||}.

This can be rewritten as:
C(K)) = {X = Zi:l,“.,dxiei S Rd ‘ Vi € [1,d] a; — % <z <a;+ é},

where k = >,_, ,a;e;. An example of the set of digitization cells obtained
from the square grid of Fig. 1a is shown in Fig. 1b.

We also define the digitization cell associated to a transformation such as
reflection, rotation, and scaling.

Definition 3. Given a transformation 7 such that any basis vector e; is trans-
formed to Te; T, the digitization cell of k € Z% transformed by T is defined
as

Cr(k):={xeR*|Vie[ld |x—«l| <|x—r+TeT|
and ||x — &l < ||x— H*TeiTT”}.

Note that Definition 3 covers:

— areflected digital cell, if 7 =37, jue; with y°,_,  uf =1;

— a rotated digital cell, if 7 = u 4 vI with u? +v? = 1;

— a scaled digital cell, if 7 = v with v € R and the digital cell is scaled by a
factor u?.

We also note that the non-transformed digitization cell centered in « is identical
with the digitization cell defined in Definition 2: C; (k) = C(x). This comes simply
from the fact that the multiplication of the scalar 1 and the basis vector e; is
lei = 1ei = €;.

Similarly to [11], we define the digitization operator as follows:

Definition 4. The digitization operator on a cubic grid is defined as

D : R4 — 74
i1, aWi® iy alui t+ e

where |u] (u € R) denotes the greatest integer not greater than u.
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Now we define the digitized reflection as the composition of the reflection
and the digitization.

Definition 5. Given a hyperplane H(m), a digitized reflection with respect to
H(m) is defined as
R™ . 74 — Z4
x +— Dol™(x).

Hereafter we focus on the case of d = 2.

4 Bijective Digitized Reflections

In order to describe the bijectivity of digitized reflections R™ in the plane, we
need to explore the structure of the square grid after reflection U™. We start by
the reflection of the basis vectors. Let us denote the reflection of e; and ey with
respect to H(m) by ¢ and 9, respectively. Applying Definition 1 to e; and e
results in

2,2
B _ v —u 2uv
d=U"(e1) =—mem ' = RoL + 3 At (10)
2uv u? — v?
_ — -1 _
P =U™(e2) = —meam ' = pERL + el (11)

Reflection of any point y € Z?2 is expressed as a linear combination of the
reflected unit vectors ¢ and . Namely, the reflected points of Ze; + Zes are
the points of the grid Z¢ + Zap. An example of the transformed grid is shown in
Fig. 2.

4.1 Set of Remainders

In a similar way as in [12], let us first consider the set of remainders to give the
definition of bijective reflections.

Definition 6. Given a reflection U™, the set of remainders S™ is defined as
S™ 72 x 72 — R?
(x,y) —U(X) -y,
Definition 7. A digitized reflection R™ = D oU™ is bijective if and only if
Vy € Z?,3x € 7%, 8™ (x,y) € C1(0), (12)
where O corresponds to the null vector.
Note that this definition can be divided into two parts like [12]:
Vy € Z%,3x € 7Z2,8™(x,y) € C1(0)
{Vx €72 3y € Z2,8™(x,y) € C_m_(0)

[Tm]]

(13)
provided S™(Z?,7Z?) N C1(0) = S™(Z%,Z*) N Crme (0), that is to say:
T = §™(22,7%) 0 (C1(0) UC m (0)) \ (CL(0) NCym (0)) = 0. (14)

As an illustration, Fig. 2b verifies the above condition whereas Fig. 2c does not.
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@) (b) ©

Fig. 2. (a) Discrete square grid Ze;, @ Ze: illustrated by gray dots, and their associ-
ated digitization cells illustrated by gray dashed squares, using the geometric algebra
implementation ganja.js [5]. The reflected points with respect to the line H(m), i.e.,
Z¢ + Zap, illustrated by blue dots. (b) and (c) Set of remainders illustrated by blue
(and red) dots; in (b) the set of remainders satisfies the bijectivity condition while (c)
does not (see the red dots for non-bijective points). (Color figure online)

4.2 Non-rational Reflection

We first show that non-rational digitized reflections are not bijective. To achieve
this, we study the structure of the set of remainders S™(Z2, Z?) with respect to
the parameters of the digitized reflection.

G denotes the set composed of the lattice Ze, & Zes and Z¢ & Zap:

G="Ze & Zes ® LD Zp. (15)

Proposition 1. If the digitized reflection U™ is non-rational, the set G is dense
and infinite.

Non-rational digitized reflection means the reflected components computed
in Eq. (10) and Eq. (11), are not integers (non-Pythagorean primitive triples).
From [9], the set obtained with non-Pythagorean is dense and infinite. In such
a case the digitized reflection is not bijective since the two vectors a,b €
S™(Z2,72) N C1(0) exist such that S™(x,y) = a and S™(x + e;,y) = b (con-
sequence of the Bolzano-Weirstrass theorem). This violates the bijectivity con-
dition because both R™(x) € C1(y) and R™(x + e1) € C1(y).

4.3 Bijectivity of Digitized Reflections

In order to characterize normal vectors leading to bijective digitized reflections,
we use the bijectivity condition of digitized rotations. Let us first recall the
bijectivity condition defined in [9] with primitive Pythagorean triples. A digitized
rotation whose rotation angle is 0 is bijective if and only if

{cos(6), sin(6)} = {Zkg_’;;,g+1, k() } keN. (16)
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Using the half angle formula and 6 € [0, 5], we have

oy 1 26+ 1 ey /1 2kl
cos(z) =4/5+ 2(2k2+2k+1) sin(g) = 4/3 2(2k2+2k+1)
_ (k41 ’ ok :

k2t 2kt 1 V2R 2kt 1

With Eq. (7), this can be rewritten using the digitized rotation given by the
entity Q as
Q=k+1+ken, keN. (17)

Note that the rotation operator does not change by any scale.
Conversely, from Eq. (17) we have

QxQ ! = (((k + Dz +ky)er + (K+ 1)y — kx)eg) (%)
= s (2 1 — 2k(k + Dy )er + ((2k + 1)y + 2k(k + 1)z ) ez,
(18)
which leads to Eq. (16). This indicates that Eq. (17) and Eq. (16) are equivalent
with each other. Equation (17) is thus the bijectivity condition of digitized rota-
tions with geometric algebra. We remark that Gaussian integers defined in [12]
gives us similar argument.

Proposition 2. Given a rational reflection line H(m) such that
m=—ke; + (k+s)es, keNseN,
the rational digitized reflection R™ is bijective if and only if s = 1.

Proof. The idea is simply to express the set of remainders of digital reflections
S™ by the set of remainders of digitized rotations S? where Q is a digitized
rotation entity. This is performed through the fact that a composition of any
digitized reflection and the digitized reflection with respect to H(es does not
induce any change in the set of remainders, namely

S (72, 7%) = S™(Z2, 77).

Besides,
Cw (0)=C_ = (0).

Tenll €
Algebraically eam = es(—keq + (k+ s)ea) = (k+ s) + keja. The resulting entity
is homogeneous to a rotation. From Eq. (17), this entity is bijective if and only
if s=1. a

2 Tm]

4.4 Finding the Closest Bijective Digitized Reflections

Let us consider the set of all bijective digitized reflections such that the reflection
lines have slant angles 6 € [0, §:

B={U™|m=—ke, + (k+ 1)eq, k € N}.
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Fig. 3. Distribution of (reflection and rotation) angles within [0, 5] that make the
digitized transformations bijective: (a) digitized reflections, (b) digitized rotations, (c)
digitized rotation approximations through pairs of bijective digitized reflections. The
same integer parameter k = 20 was used for the three figures. Note that the distribution
of angles in [§, 7] is obtained by the reflection of that in [0, 7] with respect to the line
T =1y.

We show in Fig. 3a that the slant angles of such reflection lines defined by m are
sparse around ¢ = 0 while dense around 6 = 7. We remark that in practice, we
have to limit the maximum value k. of k because of the image size. Hereafter,
instead of B, we use By, with the condition k < kpax.

The sparsity of By, ,, motivates us to approximate a given reflection R™
with the closest digitized reflection R™ such that U™ € By, .. More precisely,
given m with slant angle 6 of its reflection line, we seek for m with reflection
line having the slant angle 6 that minimizes the absolute difference between the
angles:

max

arg min ‘5— 9’.
UPEB

_z =m
‘I 11
instead of |§ — 6|. This minimization is thus equivalent with

Since tan monotonically increases in [ ], we can consider |tan(f — 6)]

tan(6) — tan(6) ‘ _

arg min — = arg min

umeB,, . |1+ tan(f) tan(d) A

kx — (k+ 1)y‘
keN 7

(k+ 1z + ky

where (z,y) are the components of m, i.e., tanf = y/z (z > y). Assuming
ke Q4, we find that k= £ achieves the minimum of the objective function
by making its numerator 0 because the denominator is always positive. As the
function f(k) = (kx — (k + 1)y)/((k + 1)z + ky) is increasing for all k& > 0,
f(k) <0 when 0 <k < y/(z—y) and f(k) > 0 otherwise, we can find k € N
such as

k= arg min

kel 525, T 5251}

(k+ 1)z + ky

Note that we consider the case where x > y. If x = y, we have m = —e; + es.
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.. H(msy)
S o H(ma)
() (b)

Fig. 4. (a) digitized rotation with 6§ = % which yields holes and double points. (b)
same digitized rotation approximation with composition of two bijective reflections.

5 Bijective Digitized Rotations via Bijective Digitized
Reflections

From the set of bijective digitized reflections, we can obtain the set of bijective
digitized rotations since any rotation can be expressed as the composition of
two reflections. We see such rotation angles are distributed sparsely as shown
in Fig. 3b, thus most digitized rotations are likely to be non-bijective and yield
holes and/or double points (see Fig. 4a).

5.1 Composition of Bijective Digitized Reflections Without Error

As any rotation is composed of a pair of reflections, it is easy to see that if
the first digitized reflection R™ = D o U™ induces no digitization error and the
second digitized reflection R™ is bijective, then R™ o R™ is a bijective digitized
rotation. Such cases occur when m = e, e; or e; + e;. However, it is also easy
to see that such composed bijective digitized rotations have the same rotation
angle distribution as that of direct (non-composed) bijective digitized rotations,
which is illustrated in Fig. 3b. This leads us to investigate the composition of
two general bijective digitized reflections.

5.2 Approximating Digitized Rotations with Bijective Digitized
Reflections

Any composition of bijective digitized reflections is also bijective, that is R™ o R™
is bijective if R™ and R™ are both bijective. Based on this fact, given a rotation
angle 6, the aim here is to find the best approximated rotation composed of a
pair of bijective digitized reflections.

The idea of our algorithm for this is simple (see Algorithm 1). Given a max-
imum possible integer k. that defines the set of bijective digitized reflections
By,... (see Sect. 4.4), we first loop over all possible bijective digitized reflections

max
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Fig. 5. Original image and its digitized rotations by bijective digitized reflections for

angles g, 7, % from left to right.

Algorithm 1: Digitized rotation by bijective digitized reflections

1 Function approxRotation

Input: kmax, rotation angle 6
Output: mutivector R for bijective approximated digitized rotation
2 R <« geometric algebra rotation ; § = 27
3 for U™* € By, do
4 z=m-excos() +mi-ersin(f), y=m-ersin()—m; e cos(f)
5 if = =y then
| my=—ei+e
7 else
8 k= arg min ka—(k+1)y
. k+1)z+k
Re(l o | [y | FFDoHh
9 ms = —ke; + (k + 1)92
10 012 « cos™!(my - my)
11 if |012| < 6 then
12 L R=mom;, 0=0;
13 return R
u™ e By, . For each U™ € By, , the second bijective digitized reflection

U™z € By, is then selected such that arccosm; - my is closest to g. For that,
we use the approximation method proposed in Sect. 4.4. We remark that since
the computations in the loop run in constant time, the overall complexity of
Algorithm 1 is linear with respect to card(By, ).

The proposed algorithm was implemented in C++ and also with the library
DGtal [1] for the digital geometry part. The code is available online!. Figure 5
shows some results on a single image with different rotation angles.

5.3 Distributions of Bijective Digitized Reflections and Rotations

With a similar idea to Algorithm 1, we can compute from By, all the rotation
angles of such bijective approximations of digitized rotations. The distribution

! https://github.com /sbreuils/GADigitized Transformations.git.
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of such angles is shown in Fig. 3c; it is even less sparse compared to those of
Fig. 3a and 3b.

In order to compare the angle distribution between Fig. 3a and 3b, we define
the angle sparsity as the maximum angle between two successive bijective digi-
tized transformations. The angle sparsity for bijective digitized reflections is 0.46
rad whereas it is 0.93 rad for bijective digitized rotations. Note that they do not
depend on the value of k..

We can also evaluate the angle fineness (denoted by Afy,i,) in terms of the
minimum angle between two successive bijective digitized transformations. We

L ) for bijective digitized

have from a given kmax(>1), Abpin = arctan ( 5m—

2
reflections while Af,,;, = arctan ( 4135 ""‘:1) for bijective digitized rotations. Note
that if kmax = 1, Abmin = arctan(m)

= arctan(}) ~ 0.32 rad for bijective
digitized reflections while it is Af,,;, = arccos (M) = arccos (4> ==

22, +2kmax+1 5
0.64 rad for bijective digitized rotations.

We easily check that Vkn.x € N*, Afnin of the bijective digitized reflection
is lower than that of bijective digitized rotation. For example, with ky. = 20
in Fig. 3, A, of bijective digitized reflections is 1.25 x 1073 rad whereas that

of bijective digitized rotations is 2.5 x 1073 rad.

6 Conclusion

We visited reflections, rotations, and their digitization using geometric algebra.
The geometric algebra framework allows us to characterize the bijective digi-
tized reflections. We first showed that compositions of bijective digitized reflec-
tions result in new bijective digitized rotations using geometric algebra. We then
demonstrated that any digitized rotation is approximated by one of these new
bijective digitized rotations.

There are other approximation methods that preserve bijectivity for rota-
tions or reflections on Z?2, such as quasi-shear rotations [2] and digital bijective
reflections [3]. Naturally, a comparative study of our approach with them is
expected as a perspective of this article. We are also interested in adapting the
presented algorithm to the case where the number of considered points of Z? is
finite; there would be more bijective digitized reflections. Finally, an extension
of the concept to higher dimensions is also our interest.
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