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ABSTRACT Temporal action proposal generation (TAPG) aims to estimate temporal intervals of actions in
untrimmed videos, which is a challenging yet plays an important role in many tasks of video analysis and
understanding. Despite the great achievement in TAPG, most existing works ignore the human perception
of interaction between agents and the surrounding environment by applying a deep learning model as a
black-box to the untrimmed videos to extract video visual representation. Therefore, it is beneficial and
potentially improves the performance of TAPG if we can capture these interactions between agents and the
environment. In this paper, we propose a novel framework named Agent-Aware Boundary Network (ABN),
which consists of two sub-networks: (1) an Agent-Aware Representation Network to obtain both agent-
agent and agents-environment relationships in the video representation; and (2) a Boundary Generation
Network to estimate the confidence score of temporal intervals. In the Agent-Aware RepresentationNetwork,
the interactions between agents are expressed through local pathway, which operates at a local level to focus
on the motions of agents whereas the overall perception of the surroundings are expressed through global
pathway, which operates at a global level to perceive the effects of agents-environment. Comprehensive
evaluations on 20-action THUMOS-14 and 200-action ActivityNet-1.3 datasets with different backbone
networks (i.e C3D, SlowFast and Two-Stream) show that our proposed ABN robustly outperforms state-of-
the-art methods regardless of the employed backbone network on TAPG. We further examine the proposal
quality by leveraging proposals generated by our method onto temporal action detection (TAD) frameworks
and evaluate their detection performances.

INDEX TERMS Temporal action proposal generation, temporal action detection, agent-aware boundary
network.

I. INTRODUCTION
Temporal action proposal generation (TAPG) [1]–[14] is one
of the most key and fundamental tasks in video understanding
i.e. action recognition [15], [16], video summarization
[17], [18], video captioning [19], [20], video recommenda-
tion [21], video highlight detection [22], and smart surveil-
lance [23], [24]. Given an untrimmed video, TAPG aims to
propose temporal intervals with specific starting and end-
ing timestamps for each action. Most of existing TAPG
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approaches first detect a set of possible starting and ending
timestamps of all actions separately, and then a proposal
evaluation module is employed to evaluate every possible
pair of starting and ending timestamps by predicting its
confidence score. The non-maximum suppression (NMS)
function is finally used to eliminate redundant candidate
proposals based on their confidence scores and overlapping
metrics. A robust TAPGmethod should be able to (i) generate
temporal proposals with actual boundaries to cover action
instances precisely and exhaustively; (ii) covermulti-duration
actions; (iii) generate reliable confidence scores so that pro-
posals can be retrieved properly [6]. Despite recent endeavors
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FIGURE 1. An overview architecture for our proposed Contextual Agent-Aware Boundary Network (ABN) for TAPG. ABN consists of two main
sub-networks i.e. Agent-Aware Representation Network and Boundary Generation Network.

[6], [12], [13], TAPG remains as an open problem, especially
when facing real-world problems such as action duration
variability, activity complexity, camera motion, viewpoint
changes, etc. In spite of good achievements on benchmarking
datasets, the existing TAPG approaches have some limita-
tions as follows:
• In previous works, video visual representation is
extracted by directly applying a backbone model, e.g.
C3D/I3D [25], Two-Stream network [15], [26] or
SlowFast network [16] into the whole spatial dimen-
sions of the video (or entire snippet). This makes the
predictions biased to the background (or environment)
instead of agents who commit actions because the agents
with their actions usually occupy a small region com-
pared to the entire frame.

• A temporal action proposal is a combination of three
entities i.e. agent, action, and environment; however,
the existing approaches do not have any mechanism to
present such combination as well as express the relation-
ship between these entities.

To address the aforementioned limitations, we leverage
human perception process of a temporal action proposal
which is a combination of three entities i.e. agent, action,
and environment and we propose a novelContextual Agent-
Aware Boundary Network (ABN). Our ABN consists
of two main sub-networks i.e. Agent-Aware Representa-
tion Network and Boundary Generation Network. The first
sub-network aims to extract video visual representation i.e.
contextual agent-aware visual feature, given an untrimmed
video whereas the second sub-network aims to estimate the
confidence score matrices and the probabilities of starting
time and ending time given a video feature. To interpret those
entities of agent, action, and environment, our Agent-Aware
Representation Network comprises of two semantic path-
ways corresponding to local pathway, which locally extracts
information from the agents who commit actions and global
pathway, which globally extracts information from entire
environment. Furthermore, the number of agents in a given
video can be arbitrary; however, a few of them are actually
committing the action. To extract a semantic local feature,

we apply a self-attention module. The final video feature
combines both local feature and global feature through a self-
attention module. The second sub-network, Boundary Gen-
eration Network, takes contextual agent-aware visual feature
as an input and consists of three modules corresponding to
Base Module to model the temporal relationship as well as
provide a shared feature sequence for later modules of Tem-
poral Assessment Module (TAM) and Proposal Assessment
Module(PAM). The overall flowchart of our proposed ABN
is given in Fig.1.

Our main contributions are summarized as follows:
1) Leveraging the human perception process of under-

standing an action which combines agents, action and
environment, we propose an end-to-end contextual
ABN for TAPG. Our ABN contains two sub-networks
corresponding to (i) Agent-Aware Representation Net-
work for extracting semantic video feature given
untrimmed video and (ii) Boundary Generation
Network to evaluate confidence scores of densely
distributed proposals.

2) Introducing Agent-Aware Representation Network,
a novel video contextual visual representation, for
extracting video feature from an untrimmed video.
Our semantic Agent-Aware Representation Network
involves two parallel pathways: (i) local pathway to tell
what agents are doing (ii) global pathway to express the
relationship between the agents and the environment.

3) Investigating the impacts of agents and the environment
as well as the interaction between agents and their
environment in our proposed ABN framework.

4) Examining the action proposal quality and effective-
ness of our proposed ABN by putting proposals that it
generated to TAD framework and evaluate its detection
performance.

5) Benchmarking the proposed ABN on popular datasets
in both TAPG and TAD, namely ActivityNet-1.3 with
three different backbone networks (i.e. C3D, SlowFast
and Two-Stream) and THUMOS-14 with two back-
bone networks (i.e. C3D and Two-Stream). Our pro-
posed ABN has achieved state-of-the-art performance
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on both TAPG and TAD regardless of backbone net-
work. The source code can be found in this URL.1

II. RELATED WORK
A. TEMPORAL ACTION PROPOSAL GENERATION (TAPG)
TAPG aims to propose temporal intervals that may con-
tain an action instance with their temporal boundaries and
confidence in untrimmed videos. In general, TAPG can be
categorized into three groups i.e. anchor-based and boundary-
based and hybrid anchor-boundary-based as follows:
• The anchor-based TAPG methods [1], [2], [5], [7]–[10],
[27] refer to the temporal boundary refinements of pre-
defined anchors or sliding windows. Those methods are
inspired by the achievements of anchor-based object
detectors in still images like Faster R-CNN [28], Reti-
naNet [29], or YOLOv3 [30]. These methods discretize
the proposal task into a classification task where multi-
ple predefined anchors with different lengths are used as
classes and a class that best fits the ground truth action
length is regarded as ground truth true class for training.
In such approaches, a large number of proposals are
densely generated. Although this approach helps to save
computational costs, this approach lacks the flexibility
of action duration.

• The boundary-based TAPG methods [11]–[13] resolve
the above problem by breaking every action interval into
starting and ending points and learn to predict them.
In those methods, there are two stages corresponding
to generating the boundary probability sequence and
applying the Boundary Matching mechanism to gener-
ate candidate proposals. In inference time, starting and
ending probabilities at every time in the given video are
predicted, then, those with local peaks will be chosen
as potential boundaries. The potential starting points
are paired with potential ending points to become a
potential action interval when their interval fits in the
predefined upper and lower threshold, along with a con-
fidence score being a multiplication of the starting and
ending probabilities. As one of the first boundary-based
methods, [11] defined actionness scores by grouping
continuous high-score regions as the proposal. Later,
boundary-sensitive method [12] proposed a two-stage
strategywhere boundaries and actionness scores at every
temporal point are predicted in the first stage and fused
together, filtered by Soft-NMS to get the final proposals
at the second stage.

• In order to make use of the advantages of both anchor-
based methods and boundary-based methods, [6], [14]
proposed hybrid approaches in which the boundary
detection and the dense confidence regression are per-
formed simultaneously by using ROI align. Based on
the observation that anchor-based methods can uni-
formly cover all segments in videos but imprecise
while boundary-based methods may have more precise

1https://github.com/vhvkhoa/TAPG-AgentEnvNetwork.git

boundaries but it may omit some proposals when the
quality of actionness score is low, [2] proposed Comple-
mentary Temporal Action Proposal (CTAP) generator.
BMN [6] is an improvement of BSN [12]. In BMN,
a boundary-matching matrix is generated instead of
actionness scores to capture an action-duration score for
more descriptive final scores, which help to improve the
final proposals’ prediction. Continuously, drawing the
inspiration fromBSN [12], [14] proposed Dense Bound-
ary Generator (DBG) and implemented the boundary
classification and action completeness regression for
densely distributed proposals.

The TAPG approaches can be summarized in Fig. 2.

FIGURE 2. Approaches summarization on TAPG.

B. TEMPORAL ACTION DETECTION (TAD)
Depending on spatial or temporal domain, action detection
approaches can be categorised into either TAD (TAD) or
spatial action detection (SAD) or spatial-temporal action
detection. TAD aims to find the temporal intervals of starting
action and ending action whereas SAD searches for human
region and the corresponding human action in spatial domain.
In this work, we focus on TAD which provides the answer of
what and when the action happens in a video.

Due to action recognition is a part of TAD, thus, most
of the early TAD methods were built based on hand-crafted
features, the same as action recognition. Early TAD methods
are based on efficient spatio-temporal feature representa-
tions and motion propagation across frames in videos such
as HOG3D [31], SIFT3D [32], ESURF [33], MBH [34]
etc. As the performance of the methods using hand-crafted
features became stabilized, TAD has reached a leveling off.
With the convolutional neural networks (CNNs) was devel-
oped [35], a lot of effective TAD approaches have proposed.
In general, TAD can be divided into either one-stage detection
or two-stage detection.

VOLUME 9, 2021 126433



K. Vo et al.: ABN: Agent-ABNs for TAPG

In one-stage framework, both temporal proposal and action
classification are learnt simultaneously. Due to the similarity
between TAD and object detection example, SSAD [27], SS-
TAD [36]made use of single-shot detector to solve TADwith
one-stage detection.While both SSAD and SS-TADmake use
of C3D feature [25], [37]–[39], SS-TAD adopts the anchor
mechanism and the stacked GRU units.

Unlike one-stage framework, two-stage approach is based
on the paradigm of proposal generation-and-then classifica-
tion i.e. extracts temporal proposals first, and then processes
with the classification and regression operations. Similar to
proposal generation in object detection, TAPG plays the most
important role in TAD in this two-stage approach paradigm.
Two-stage framework is the mainstream method, so most
papers adopt this. TAD can be implemented by: (i) sliding
windows such as S-CNN [8] which fixes some size sliding
windows to generate various sizes video segments, and then
deal with them by a multi-stage network. S-CNN is build on
C3D feature and contains thee sub-networks corresponding
to TAPG, classification and localization; However, S-CNN is
time consumption when increasing the overlap between the
windows to obtains good performance, TURN [9] leverages
Faster RCNN to improve S-CNN by integrating boundary
regression network. (ii) boundary network such as BSN [12],
BMN [6], DBG [14] which aim to deal with video actions
of different lengths and with precise temporal boundaries
as well as reliable confidence scores. BSN first locates the
boundaries of the temporal action segments i.e. starting time
and ending time. Both starting time and ending time are then
combined into temporal proposal. Based on the sequence
of action confidence scores for each candidate proposal, a
32-dimensional proposal-level feature is extracted and bench-
marked for evaluating the confidence of the temporal pro-
posals. BMN and DBG are both improvements of BSN
with a new confidence evaluation and boundary-matching
mechanisms.

C. VIDEO FEATURE REPRESENTATION
Following the success of CNNs on image tasks. In [25],
Tran et al. proposed a simple linear model named C3D which
outperforms all previous best-reported methods. By transfer-
ring the 2D pre-trained model to 3D model, [40] proposed
I3D. In I3D, the 3D filters are replaced by a set of repeated
2D filters. Inspired by the success of ResNet in image clas-
sification, Hara, et al. extended ResNet architecture to 3D
CNN and proposed 3DResNet [41]. In their work, they exam-
ined various 3D CNN architecture under different backbone
such as ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-152, ResNet-200, DenseNet-121 and ResNeXt-101.
The mainstream networks fall into three categories: Two-
Stream networks, Recurrent Neural Network (RNN) with its
popular variant named Long Short Term Memory (LSTM),
and 3D networks. Two-Stream networks were first intro-
duced by [15] and then they have been improved in [26].
Two-Stream networks explore video appearance and motion
clues with two separate networks. One network is to exploit

spatial information from individual frames while the other
uses temporal information from optical flow. The outputs
of the two networks are then combined by late fusion.
RNN/LSTM is believed to cope with sequential informa-
tion better, and thus many proposed methods [42], [43]
attempted to incorporate LSTM to deal with action recog-
nition. 3D networks, which were first introduced by [44],
extract features from both the spatial and the temporal dimen-
sions by performing 3D convolutions, thereby capturing the
motion information encoded in multiple adjacent frames.
Later on, C3D features, 3D CNN architectures and their
improvements [25], [37]–[41] have been proposed. In [25],
Tran et al. proposed a simple linear model named C3D which
outperforms all previous best-reported methods. By trans-
ferring the 2D pre-trained model to 3D model, [40] pro-
posed I3D. In I3D, the 3D filters are replaced by a set of
repeated 2D filters. Inspired by the success of ResNet in
image classification, Hara, et al. extended ResNet architec-
ture to 3D CNN and proposed 3D ResNet [41]. In their
work, they examined various 3D CNN architecture under dif-
ferent backbone such as ResNet-18, ResNet-34, ResNet-50,
ResNet-101, ResNet-152, ResNet-200, DenseNet-121 and
ResNeXt-101. Recently, SlowFast network [16] is a vari-
ation of 3D CNN networks category, in which two paral-
lel pathways are utilized to capture appearances of video
scene and object motion in each pathway. SlowFast net-
works have been proposed to tackle the action recognition
and action spatial localization tasks and got the highest
scores in many benchmark datasets e.g. Kinetics, Charades,
AVA, etc.

Our proposed ABN belongs to the category of two-stage
TAD and boundary-based TAPG approach where our focus is
human perception-based video feature extraction which aims
to obtain semantic video representation followed by human
perception of action understanding.

III. OUR PROPOSED METHOD: AGENT-AWARE
BOUNDARY NETWORK (ABN)
A. PROBLEM FORMULATION
Considering an untrimmed video V = {xl}Ll=1 with L frames,
our goal is to generate a set of temporal segments which
inclusively and tightly contain actions of interest. Given a set
of ground truth action segmentsA = {ai = (si, ei)}Mi=1 having
M temporal segments with an action segment comprised of
a starting timestamp (si) and an ending timestamp (ei), our
objective is formalized byminimizing the following objective
function:

L =
M∑
i=1

log p(ai|V) (1)

As proposed by [12] and [6], the above objective function
may also be achieved indirectly by decomposing the action
proposal generation problem into detecting starting and end-
ing timestamps of every actions together with their duration,
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as formulated below:

L =
M∑
i=1

log p(si|V)+ log p(ei|V)+ log p(ei − si|si) (2)

Instead of representing the video frames separately as indi-
vidual feature vectors, in our proposed framework, we divide
the video V into T =

⌊L
δ

⌋
non-overlapping snippets of δ

consecutive frames. Each snippet of δ frames captures the
motions taking place alongside the appearances, which are
crucial in detecting the starting and ending timestamps for
each action.

We denote φ as a feature extraction function which is
applied to every δ-frame snippet, the visual representation
feature sequence F of the entire video V can be defined as:

F = {fi}Ti=1 = {φ(xδ·(i−1)+1, . . . , xδ·i)}
T
i=1 (3)

In most of the previous works [2]–[4], [6], [12]–[14], [45],
[46], function φ is simply defined as the extraction of a
feature vector from a hidden layer of C3D Network [25],
Two-Stream Network [15], or SlowFast Network [16] given a
δ-frame snippet. However, as stated in the above sections, this
may cause insufficient or noisy information capture because
actions and the agents, who create the actions, usually take
place in small spatial regions of the video.

Hence, in this work, we propose a novel action proposal
generation model in videos, named Agent-Aware Boundary
Network, equipped with a new feature extraction mechanism
for the function φ namely Contextual Agent-Aware Repre-
sentation Network (described in Sec. III-B1) to be able to
incorporate information from both agents and the interaction
between them and surrounding environment. Our proposed
ABN with the Contextual Agent-Aware Representation Net-
work can be developed on any backbone such as C3D Net-
work [25], Two-Stream Network [15], or the latest model
of SlowFast Network [16]. More details are discussed in
section III-B.

B. NETWORK DESIGN
The ABN consists of two sub-networks and is demonstrated
in Fig. 1. The first sub-network, Contextual Agent-Aware
Representation Network, extracts contextual Agent-Aware
visual representation of a δ-frame snippet at both global and
local levels and is detailed in section III-B1. The second
sub-network,BoundaryGenerationNetwork, takes the first
component as the input and generates the action proposals
and is described in section III-B2.

1) CONTEXTUAL AGENT-AWARE REPRESENTATION
NETWORK
The contextual Agent-Aware representation network extracts
contextual video visual representation of a δ-frame snippet,
whichmakes a significant contribution in TAPG. Considering
our goal is extracting features for a δ-frame snippet from
frame t to frame t + δ, our Agent-Aware representation
network is illustrated in Fig. 3 and consists of four steps,

i.e. (i) backbone feature extraction, (ii) global feature extrac-
tion, (iii) local feature extraction, and (iv) feature fusion.
Notably, there are two kinds of feature extracted in our pro-
posed network, i.e., environment feature extracted through
step 2 plays a role of global semantic level, and agent fea-
ture extracted through step 3 plays a role of local semantic
level.
Step 1: Backbone Feature Extraction: The backbone net-

work is used to encode global semantic information of the
entire δ-frame snippet. In order to prove the robustness of
our proposed ABN, which is independent to the backbone
network, we adopt Two-Stream, C3D [25] and SlowFast [16]
networks in our experiments. These networks process a snip-
pet of frames through multiple blocks of residual convolu-
tional layers, with each block Bi ∈ {Bi}4i produces a feature
map Si ∈ {Si}4i . Assume N is the last block of the backbone
network, the feature map SN is then used as input for the two
parallel pathways as in the next two steps.
Step 2: Global Feature Extraction: To extract global fea-

ture, the feature map S4 keeps going through average pooling
and several fully connected layers until the second last layer,
forming a vector which captures the overall scene, namely
the global feature φe. Because all spatial dimensions are
processed, this pathway captures the abstract information at
the global level of the scene, however, it may not able to
capture the details like motions of agents inside.
Step 3: Local Features Extraction: The local features

extraction consists of two procedures. First, the local seman-
tic feature vectors of each agent appearing in the video snippet
are extracted. Then, all local feature vectors extracted from
the first step are fused together to form an agent-aware feature
vector. In order to fuse an arbitrary number of local semantic
features, we employ a self-attention module with an average
pooling layer, which is discussed below.

For local semantic feature vectors extraction, we first
detect agent appear in the δ-frame snippet by a human
detector. The center frame of the snippet is heuristically
selected to feed into the detector because it is least diverged
compared to frames at both ends of the snippet. We utilize
Faster R-CNN [28] model pre-trained on COCO dataset [47]
as our human detector after eliminating all object classes
except the ’person’ class. Detected human bounding boxes
with confidence scores above 0.5 are then used to guide
the RoIAlign [48] to extract features from S4, each feature
storing local information about appearance and motion of the
corresponding agent, called the local semantic feature.

After a set of local semantic features is formed, we employ
a self-attention module to fuse them together into a single
local agent-aware feature φa. The self-attention module looks
at the local semantic feature of each agent and assigns up-
weights to agents who play important roles in the video
snippet or are committing observed actions while assigning
down-weights to the minor role agents.

In this step, the Faster R-CNN [28] works as a hard atten-
tion module which eliminates all the background and only
emphasizes humans or agents moving in the scene. On the
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FIGURE 3. An overall architecture of our proposed contextual Agent-Aware representation network which contains four steps. Given a δ-frame
snippet, the final video visual feature is conducted by both global feature and local feature.

other hand, the self-attention module works as a soft attention
module which helps to concentrate on the right agents but also
keeps information of the other agents because the activities
we observe may require the interaction between these agents.
Step 4: Feature Fusion: Finally, the environment feature

φe and the agent aware feature φa are fused by another self-
attention module (discussed below). While simultaneously
processing these features, the self-attention module would
re-weight them by a proper ratio, which helps the over-
all model to know which type of information to consider
while reasoning the action proposals, i.e. deciding whether
to emphasize on local information of the agents or global
information of the scene.

a: SELF-ATTENTION MODULE
In both TAPG and TAD, an arbitrary number of agents may
appear in each snippet, which leads to difficulty to combine
them into a single feature vector attentively to represent the
snippet. Inspired by that problem, we propose a self-attention
module which adopts the Transformer Encoder model [49] to
learn to re-weight the importance of the semantic features set
based on each of themselves and fuse them together by an
average pooling operation.

The self-attention module is employed twice within a snip-
pet, i.e. (i) encode the list of individual agent features to a
single multi-agent feature and (ii) fuse both the environment
feature φe and the multi-agent feature φa to a snippet feature
f . Generally, a Transformer Encoder model will encode the
set of input features 0 = {ηi}

γ

i=1 to three matrices of latent
states, namely keys K = (ki = θk (ηi)), queries Q = (qi =
θq(ηi)) and values V = (vi = θv(ηi)). Notably, in the agent
feature extraction (step 2), γ is equivalent to the number
of agents, η is corresponding to individual feature and 0 is
a single multi-agent feature whereas in the feature fusion

(step 4) γ is set as 2 and η is corresponding to environment
feature and multi-agent feature and 0 is snippet feature. θ is
defined as a fully connected layer. For each query state qi of
an input feature, an attention function defined in Eq. 4 maps a
query qi and a set of key-value pairs (K , V ) to an output. The
output is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibility
function of the query with the corresponding key as follows:

A(qi,K ,V ) = softmax(
qi · KT
√
dK

)V (4)

where dK is the number of dimensions in key states. Then,
an average pooling layer is applied to fuse the resultingmatrix
0A = A(qi,K ,V )

γ

i=1 and form the overall context feature
based on input features set.

The proposed self-attention model is utilized in our pro-
posed ABN in a differentiable fashion and is trained along
with the other parts of our network in an end-to-end way,
hence, the resulting model may be able to properly generate
the contextual Agent-Environment feature, which decreases
the impact of background information in every snippet.

2) BOUNDARY GENERATION NETWORK
Our ABN belongs to the category of boundary-based
approach and the boundary sub-network, i.e. boundary gen-
eration network, contains three modules i.e. Base Module,
Temporal Assessment Module (TAM) and Proposal Assess-
ment Module (PAM). These modules are described follows:

BaseModulefirst processes the feature sequenceF , which
is extracted from the video by our contextual Agent-Aware
representation network, through several 1D convolutional
layers to extract temporal relationships between nearby snip-
pet features. Those 1D convolutional layers are designed with
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TABLE 1. The detailed architecture of the boundary generation network which takes the contextual Agent-Aware visual feature F as the input. T and D
are the temporal length of the video and maximum duration of proposals in terms of number of snippets. The obtained outputs are OT and OP , which are
corresponding to boundary-predictions and proposal actionness scores.

a stride of 1 and same padding to reserve temporal length of
the output feature sequence.

Temporal Assessment Module (TAM) takes the features
sequence from base module and estimates probabilities of
every temporal location being a starting or ending boundary.

Proposal Assessment Module (PAM) also takes the fea-
tures sequence from base module and produces two matrices,
each of which densely contains the confidence scores of every
possible duration at every starting temporal point, but are
trained by two different types of loss functions as suggested
by [6]. These matrices would have a shape of D × T with
D is the maximum length of the proposals in snippets that
we consider and T is the number of snippets. In this work,
we set D = T for ActivityNet-1.3 [50] and D = T/2 for
THUMOS-14 [51] as suggested by [6].

Network architecture of Boundary Generation Network is
given in Table 1. In Table 1, base module is represented by
layer 1 to layer 3, temporal assessment module is represented
by layer 4 and proposal assessment module is represented by
layer 5 to layer 10.

C. TRAINING PHASE
1) LABEL GENERATION
We follow [6], [12] to generate the ground truth labels for
training process including starting labels, ending labels for
TAM training and duration labels for PAM training.

The starting and ending labels are generated for every
snippet of the video, which are called LS = {lsn}

T
n=1 and

LE = {len}
T
n=1, respectively. The boundaries timestamps

(starting and ending) of every action instance ai = (si, ei)
are rescaled into T -snippet range by multiplying them with
T ·fps
L where fps is the frame rate of the video and the action

instance ai ∈ A, A = {ai}Mi=1. After rescaling, the action
instance ai becomes a new action instance aδi = (sδi , e

δ
i ).

For every snippet tn ∈ T , we denote a temporal region
rn = [tn− 1

2 , tn+
1
2 ]. Analogously, for every pair of boundaries

(sδi , e
δ
i ) of action a

δ
i , we denote regions r

s
i = [sδi −

3
2 , s

δ
i +

3
2 ]

and rei = [eδi −
3
2 , e

δ
i +

3
2 ] as their corresponding starting

region and ending region. By this formulation, we have two
sets of regions RS = {rsi }

M
i=1 and RE = {rei }

M
i=1 for starting

and ending boundaries, respectively. Finally, starting label
lsn and ending label len of a snippet tn are calculated by the
following functions:

lsn =

1,
M∑
i=1

rn∩rsi
rsi
≥ 0.5

0, otherwise

len =

1,
M∑
i=1

rn∩rei
rei
≥ 0.5

0, otherwise

The duration labels for a video are gathered into a matrix
LD ∈ [0, 1]D×T whereD is the maximum length of proposals
being considered in number of snippets, as suggested in [6],
we set D = T in all of our experiments. With an element
at position (ti, tj) stands for a proposal action ap = (ts =
tj·T
tv
, te =

(tj+ti)·T
tv

), it will be assigned by 1 if its Interaction-
over-Union with any ground truth action inA = {ai}Mi=1 reach
a local maximum, or 0 otherwise.

2) LOSS FUNCTION
As mentioned in section III-B2, TAM will generate proba-
bilities vectors of starting and ending boundaries (PS ∈ RT

and PE ∈ RT ), while PAM will generate two actionness
scores matrices PccD ∈ RD×T and PcrD ∈ RD×T . These four
outputs are trained simultaneously by different loss functions
as following:

LTAM = Lbin(PS ,LS )+ Lbin(PE ,LE ) (5)

LPAM = Lbin(PccD ,LD)+ λreg · L2(PcrD ,LD) (6)

L = λ1 · LTAM + λ2 · LPAM (7)
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As proposed by [6], [12], we set λreg = 10 and λ1 =
λ2 = 1, furthermore,Lbin is a weighted binary log-likelihood
function to deal with imbalanced number of negative and pos-
itive examples in groundtruth labels. Generally, Lbin(Ŷ ,Y )
between prediction Ŷ ∈ RN and groundtruth Y ∈ RN is
defined as follows:

1
N

N∑
i=1

α+ · Yi · log Ŷi + α− · (1− Yi) · log (1− Ŷi), (8)

where · is multiplication operator. The weighting parameters
are automatically set by number of positives and negatives,
specifically, α+ = N

N+ and α− = N
N− , with N , N− and N+

are total number of examples and total number of positive and
negative examples, respectively.

D. INFERENCE PHASE
During inference, four outputs are generated by the boundary
generation network from the features sequence extracted by
our ABN, including PS , PE from TAMoutput (output of layer
4 in Table 1) and PccD , P

cr
D from PAM output (output of layer

10 in Table 1). Peaking probabilities of starting and ending
boundaries from PS and PE , which are local maximums,
are selected to form initial proposals by pairing every peak
starting point with peak ending points behind them andwithin
a pre-defined range. For a proposal formed by ts and te
boundaries with duration dp = te−ts, its score sp, as proposed
in [6], are computed as follows:

sp = PS [ts] · PE [te] ·
√
PccD [dp, ts] · P

cr
D [dp, ts] (9)

Then, with a list of proposals and their scores, a Soft-
NMS [52] is applied to eliminate highly overlapped proposals
before outputting the final list of proposals.

IV. EXPERIMENTS
A. DATASETS & METRICS
1) DATASETS
We evaluate our proposed method on two bench-
mark datasets, namely ActivityNet-1.3 [50] and
THUMOS-14 [51].

ActivityNet-1.3 [50] is a large scale dataset for bench-
marking methods in human activity understanding problems,
in which, action proposals and action detection are the centers
of attention. The dataset contains 200 distinct activity classes
and a total of 849 hours of videos collected from YouTube.
ActivityNet-1.3 [50] contains roughly 20K untrimmed videos
which are divided into training, validation and test sets with
the ratio of 0.5, 0.25 and 0.25, respectively. Each video in
ActivityNet-1.3 [50] is annotated with one or more temporal
intervals accommodating any activity out of 200 activities of
interest. Due to the unavailability of annotations on test splits,
we compare and report performances of our approach and
other state-of-the-art methods on the validation set, unless
otherwise stated.

THUMOS-14 [51], on the other hand, is primarily
a dataset for action recognition. Fortunately, a track of

action localization and detection are derived from a por-
tion of its videos. Concretely, 200 and 214 untrimmed
videos are extracted from the validation and test sets of
THUMOS-14 [51], respectively, for training and testing
methods in action detection.

2) METRICS
To comprehensively evaluate the performance of the pro-
posed ABN, we not only evaluate it in action proposals
generation task, but also in action detection task.

For action proposals generation, on both
ActivityNet-1.3 [50] and THUMOS-14 [51], we measure
AR with different Average Numbers (ANs) of proposals,
denoted as AR@AN. AN is defined as the average number
of proposals kept by every video in the dataset. Temporal
intersection over union (tIoU) is used as the sole metric to
classify a proposal. We follow the traditional practice, tIoU
thresholds set from 0.5 to 0.95 with a step size of 0.05 are
used on ActivityNet-1.3, while tIoU thresholds set from
0.5 to 1.0 with a step size of 0.05 are used on THUMOS-14.
On ActivityNet-1.3 particularly, we report the score of area
under the Average Recall (AR) versus Average Number of
Proposals per Video curve (AUC), with the average number
of proposals ranges from 0 to 100.

For action detection task, following previous works
[6], [12], we mainly evaluate our method by Mean Aver-
age Precision at tIoU (mAP@tIoU), with the tIoU in ranges
[0.5, 0.75, 0.95] and [0.3, 0.4, 0.5, 0.6, 0.7] for ActivityNet-
1.3 and THUMOS-14, respectively. At a specified tIoU,
Average Precision is calculated for every action class and then
averaged up to mAP@tIoU. On ActivityNet-1.3 particularly,
we also report the Average mAP which is averaged among all
mAP@tIoU scores.

For comparability purposes, we follow the same setting
up which was described in [6]. We re-scaled all videos to
1600 frames by linear interpolation and extracted features for
every separate snippet with length δ = 16 frames. There-
fore, every video sequence will be represented by a feature
sequence with the length of exactly 100 features.

B. IMPLEMENTATION DETAILS
On AcitivityNet [50], we benchmark our proposed ABN on
C3D [25], SlowFast [16] and Two-Stream [26] backbones,
the first two backbones are pre-trained on Kinetics-400 [63]
dataset, while the last one is pre-trained on recognition track
of ActivityNet-1.3 [50]. The feature map SN of each back-
bone is extracted for the local feature extraction step, which
has 2048 dimensions, 2304 dimensions and 400 dimensions
for C3D, SlowFast and Two-Stream, respectively. We always
keep this feature size throughout our proposed network and
output the Contextual Agent-Environment Feature of the
same size as that of backbone feature.

On THUMOS-14 [51], for fair comparisons with prior
works [6], [12], [14], we employ C3D [25] and Two-
Stream [26] networks as the backbones of our proposedABN.
The C3D [25] backbone is pre-trained on Kinetics-400 [63],
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TABLE 2. Comparison in terms of AR@AN and AUC between our proposed ABN against other state-of-the-art TAPG methods on validation set and test set
of ActivityNet-1.3 dataset. The best performance is shown in bold. The second best performance is shown in italic.

whereas Two-Stream backbone is pre-trained on the action
recognition track of ActivityNet-1.3 [50]. Output feature
map S4 from C3D and Two-Stream backbones are 2048 and
400 dimensions, respectively.

In the local feature extraction step, we adopt a Faster
R-CNN [28] model pre-trained on COCO dataset [47] to
detect human bounding boxes for generating local features
later by RoI alignment with the feature map S4.
The Transformer Encoders we used in Self-AttentionMod-

ule for contextually merging local features into the local
agent-aware feature or merging the local agent-aware feature
with the global feature together share the same architecture
of 4 attention heads and 1 transformer layer.

For every experiment, we trained our model for 10 epochs
with initial learning rate of 0.0001 and Adam optimizer,
the best performed model on validation set is chosen for
further comparison.

In addition, we apply an augmentation where any
groundtruth video, whose groundtruth actions having average
length higher than a factor of τupper of its length, will be dis-
carded. Contrarily, any groundtruth video, whose groundtruth
actions having average length lower than a factor of τlower
of its length, will be duplicated. We empirically observe that
with τupper = 0.98 and τlower = 0.3, those augmenta-
tions during training will help the network achieve better
performance andmore robust on both datasets of ActivityNet-
1.3 [50] and THUMOS-14 [51].

C. PERFORMANCE ON TAPG
1) COMPARE WITH STATE-OF-THE-ART METHODS
Table 2 shows the comparison in terms of AR@AN
(AN = 100) and AUC between the ABN against other
state-of-the-art methods on both validation set and test set
of ActivityNet-1.3 [50] dataset. Our performance is given in

the last three rows of Table 2. Compared against other state-
of-the-art approaches, our proposed ABN obtains better per-
formance on both AR@AN and AUC metrics regardless the
backbone network. Concretely, the ABN outperforms BMN
with 2.21%, 2.11% and 2.07% in terms of AUC on test set,
when using Two-Stream [26], SlowFast [16] and C3D [25]
backbones, respectively. With the most recent state-of-the-
art, namely DBG [14], our proposed network makes the gaps
of 0.83%, 0.73% and 0.69% on AUC on testing set with Two-
Stream, SlowFast and C3D backbones, respectively.

Additionally, Table 3 summarizes the performances of our
proposed ABN and other state-of-the-arts on testing set of
THUMOS-14 [51] in terms of AR@AN (AN is in a set of
[50, 100, 200, 500, 1000]). Our experiments are conducted
on C3D [25] and Two-Stream [26] backbone networks fol-
lowing previousworks for fair comparisons. Besides, inspired
by [14], we also measure the performance of our method
with both NMS and Soft-NMS in post-processing phase.
Surprisingly, our proposed ABN outperforms all the previous
works with very large margins as shown in Table 3. We also
noticed that using NMS will help the method to have better
performances on top 200 proposals, while Soft-NMS will
help the method to have better performances on more pro-
posals e.g. 1000 ones.

Fig. 4 illustrates some qualitative results of the generated
proposals by ABN and BMN [6] on ActivityNet-1.3 [50].
The experimental results show that Agent-Aware Boundary
Network generates much better proposals, which almost per-
fectly cover the groundtruth events and tightly fit with their
boundaries.

2) GENERALIZABILITY OF PROPOSALS
One of the most important properties of a TAPG
method is generating high quality proposals for unseen
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TABLE 3. Comparisons with other state-of-the-art TAPG methods on testing set of THUMOS-14 dataset in terms of AR@AN, where SNMS stands for
Soft-NMS. The best performance is shown in bold. The second best performance is shown in italic.

TABLE 4. Generalizability evaluation on ActivityNet 1.3. The best performance is shown in bold.

action categories.We follow the protocol defined in BSN [12]
and BMN [6] to evaluate the generalizability of our proposed
ABN. There are two un-overlapped action subsets: ‘‘Sports,
Exercise, and Recreation’’ and ‘‘Socializing, Relaxing, and
Leisure’’ of ActivityNet-1.3 are chosen as seen and unseen
subsets separately. With such selection, there are 87 and
38 action categories, 4455 and 1903 training videos, 2198 and
896 validation videos on seen and unseen subsets sepa-
rately. We first train our ABN on both seen training set
and seen+unseen training set and then evaluate it on seen
validation set and unseen validation set separately. Table 4
shows the performance of ABN along with the comparison
with BSN [12] and BMN [6]. Compare with BSN and BMN,
the ABN achieves better generalizability on both seen and
unseen validation sets. This proves that our method can be

used to generate proposals for activities and actions that it
never met during the training phase.

D. PERFORMANCE ON TAD
Another important aspect worth considering is the utiliza-
tion of proposals in action detection. Following BSN [12]
and BMN [6] for a fair comparison, we adopt top-1
video-level classification results generated by method in [57]
on ActivityNet-1.3 to label the proposals generated by our
method. Meanwhile, we use top-2 video-level classification
results generated by UntrimmedNet [64] to label proposals
generated by our method on THUMOS-14. The labeled pro-
posals are then evaluated on mAP@tIoU metric as described
in Sec. IV-A2.
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FIGURE 4. Qualitative results of proposals by BMN [6] and our proposed ABN on ActivityNet-1.3 [50], we use
our best performed configuration which includes C3D [25] as backbone feature extractor.

Table 5 illustrates the performance of ABN and compar-
ison with other state-of-the-art methods on ActivityNet-1.3
validation set. As we can see, our method outperforms
BSN [12], BMN [6] on all settings with a large margin and
keeps a good distance with the most recent state-of-the-art
mehtod in action detection named GTAD [59] on all settings
except mAP@0.75.

The experiment results on THUMOS-14 shown
in Table 6 again emphasizes the superior performance of
our ABN when compare with other methods including the
state-of-the-art method in action detection, namely
GTAD [59].

E. ABLATION STUDY
We conduct several ablation studies on the validation set of
ActivityNet-1.3 dataset to analyze the contribution of indi-
vidual feature in the ABN. In addition to different backbone
networks, i.e. C3D [25], SlowFast [16] and Two-Stream [26],
we have investigated the following ablation configurations
for each backbone network.
• Environment Feature Only (Env.): the network relies
solely on global features to generate proposals.

• Agent Feature Only (Agent): the network relies com-
pletely on the contextual agent-aware features and does
not use global feature.
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FIGURE 5. Qualitative results of proposals generated by our proposed ABN on THUMOS-14 [51], we use our best
performed configuration which includes Two-Stream [15] as backbone feature extractor.

TABLE 5. TAD results on ActivityNet-1.3 in terms of mAP@tIoU and average mAP, where our proposals are combined with video-level classification results
generated by [57].

TABLE 6. Performance comparisons between our proposed ABN and the other proposal generation methods in terms of TAD on the testing set of
THUMOS-14, where mAP is reported with tIoU set from 0.3 to 0.7 and Unet classifier is used.

• Both Environment and Agent Feature: both global
feature and local feature are used and fused by

Self-Attention Module. This network configuration is
actually our proposed ABN.
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TABLE 7. Ablation studies on the effectiveness of each component in the proposed ABN on ActivityNet-1.3 dataset with environment feature (Env.) and
agent feature (Agent) in terms of AR@AN (AN = 100) and AUC. The ablation study is conducted on various features i.e C3D, SlowFast and Two-Stream.

Table 7 provides the results in terms of AR@AN (AN= 1,
10, 100) and AUCmetrics of the ABN under different feature
configurations on ActivityNet-1.3. In Environment Feature
Only (Env.) configuration, there is only a global information
about the environment of entire video frames, whereas in
Agent Feature Only (Agent) configuration, there is only a
local information about the agents. Table 7 has shown that
each feature has its own contribution and the combination of
both features exhibits the best performance. This result proves
that our aforementioned observations are valid and reliable.

V. CONCLUSION
In this paper, we proposed a novel contextual Agent-Aware
Boundary Network (ABN) for the TAPG. Our ABN contains
two components corresponding to Agent-Environment repre-
sentation network and boundary generation network. The first
component extracts the contextual visual representation of the
video whereas the second component with boundary-based
mechanism aims at evaluating confidence scores of densely
distributed proposals. Different from the previous works,
which apply backbone network into the entire video frame,
the video visual representation in the proposed ABN involves
two parallel pathways: (i) the local pathway, which plays at
the agents level and tells about where the agents are and
what the agents are doing; (ii) the global pathway, which
plays at an environment level and tells about how the envi-
ronment affects after receiving the actions from the agents
as well as the relationship between the agents, actions, and
the environment. The experiments have demonstrated that our
proposed ABN outperforms state-of-the-art proposal genera-
tion methods with C3D, SlowFast and Two-Stream backbone
networks on both ActivityNet-1.3 and THUMOS-14 datasets.
Our superior performance relies on both global feature and
local feature, and demonstrates the robustness of the proposed
ABN regardless of the backbone network as well as the effec-
tiveness of our two-pathway contextual Agent-Environment
visual representation. Additionally, our proposed method can
also be generalized well to generate proposals for activities
and actions that it never sees in training phase. Therefore, our
method also shows the superior results in further applications
like action detection task.
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