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Abstract

We present a video representation learning framework
for real-time video object detection. Our approach is based
on the interesting observation that a powerful prior knowl-
edge of video context helps to improve object recognition,
and it can be acquired via learning video representations
through stochastic video prediction. Our proposed frame-
work utilizes the stochastic video prediction into object de-
tection so that we first acquire a prior knowledge of videos
to have video representations and then adjust them to ob-
ject detection to improve the accuracy. We validate our
proposed method on ImageNet VID and VisDrone-VID2019
datasets to demonstrate the effectiveness of video represen-
tation learning via future video prediction. In particular,
our extensive experiments on ImageNet VID show that our
approach achieves 73.1% mAP at 54 fps with ResNet-50 on
commercial GPUs.

1. Introduction
Video object detection, which localizes objects in each

frame in a video, is one of the fundamental tasks in com-
puter vision. Different from image object detection, it has
different characteristics such as degradation due to motion,
and thus poses a new challenge to accurately and stably
detect objects. Detecting objects accurately in consecutive
frames in a video has been studied along with the improve-
ment of convolutional neural networks [28, 43, 56], and can
be broadly divided into offline and online methods. Of-
fline methods [10, 54, 64] have been more studied than on-
line methods [9, 29, 36] because they can make full use of
video frames including future ones to improve accuracy. In
the live-streaming video scenario such as using surveillance
cameras, however, future information is not available to de-
tect objects in a current frame. Online detectors [9, 29, 36]
have thus focused on stabilizing feature maps with tempo-
ral information from past to the current frames, but have
difficulty in achieving the accuracy of offline detectors.

Recently, an online detector [21] has been proposed that

(a) Pre-training the model by future prediction

(b) Fine-tuning the model to a downstream task

Figure 1: The overview of our proposed framework. To ob-
tain a video representation, we pre-train the model through
the future prediction task. Then, we append a detection
module to the trained model and transfer it to the detection
task. In the inference, only the dotted line area in (b) is used
(the future prediction part is not used).

predicts the next frame feature map using the past frames
and then enriches the current feature map with the infor-
mation to detect objects at the same time. This approach is
more effective than just stabilizing the feature map with past
information, since it actively learns how an object moves to
predict a feature map at the next frame. While the method
improves accuracy, it has the following limitations: (1) Pre-
dicting the next frame feature map is too short-term, so the
future information is not effectively utilized in the training
phase. (2) The accuracy of predicting the next-frame feature
map depends on the feature detector, and the feature detec-
tor itself is acquired in the training phase where the future
information is not effectively utilized. Hence, it is insuf-
ficient to leverage future information to train online video
detection with the aforementioned method [21].

Video pre-training methods are recently studied for
video recognition tasks where a video representation is
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Figure 2: Accuracy-speed trade-off across various online
detectors on ImageNet VID (our method is plotted in red,
using ResNet backbones). Green color area represents real-
time performance.

learned through such as pace prediction [51] or pseudo-
label estimation [23]. Predicting future frame images in a
video [8,32] can be regarded as a video pre-training method.
It can provide a video representation that effectively learns
temporal and spatial information, and can be applied to on-
line object detection. However, since existing studies focus
only on generating future frames, proposed model struc-
tures are task-specific, and their applicability to other tasks
is not well investigated.

Based on the above observations, we propose a frame-
work that utilizes stochastic next-frame video predic-
tion [32] into online video object detection. During train-
ing to generate future frames, we can obtain the video rep-
resentation that can effectively stabilize the feature map at
the current frame with temporal information from past to
longer-term future frames. Figure 1 shows the two-stage
training flow of the proposed framework. First, we pre-train
the encoder-decoder structure of the detector using stochas-
tic next-frame video prediction [32]. In this pre-training
step, the video representation, namely, the context of the
video is learned.This step is conducted by self-supervised
learning with unlabeled videos, and thus our model can
exploit large-scale videos with no annotation. Next, we
append the object detection module to the decoder as the
downstream task and then fine-tune the model for a detector.
We remark that although “pre-training” and “fine-tuning”
are often used as applying a model trained on one dataset
to another dataset in the same task, they mean in this pa-
per transferring the model to another task. We validate the
proposed framework on ImageNetVID [42] and VisDrone-
VID2019 [62], and confirm that the proposed framework
effectively improves the detection accuracy while maintain-
ing real-time performance. Figure 2 depicts comparison
between state-of-the-art models, showing that our model
achieves the best trade-off between accuracy and speed.

2. Related work
Object detection in videos. The main focus of recent meth-
ods for video object direction is to improve detection accu-
racy by exploiting temporal information. These methods
are roughly categorized into offline and online.

Since the offline video object detector has access to past
and future frames, it exploits all available information to
improve the detection accuracy in the current frame. Offline
detectors have been proposed by exploiting complementary
information [31], future information [5, 26, 27, 52, 64], and
relationships between frames [10, 15, 54] and classes [25].
Despite the accuracy improvement, these detectors are slow
and do not work in real time.

On the other hand, online video object detectors have re-
cently been studied in applications to live-streaming videos
captured by smartphones and robots. In these scenes, only
past information can be available, and fast processing speed
is required.

To propagate past information to stabilize the current
feature map, methods are proposed by utilizing clues such
as flow information [63, 65], recurrent neural networks [9,
35, 36], attention mechanism [20, 24, 29, 30, 58, 66], track-
ing [19, 59], adaptive scaling [11], memories [14], and
heatmaps [57]. Aggregating past-frame features in mem-
ories using an attention mechanism has also been pro-
posed [29] to improve both the accuracy and run-time. Re-
cently, it has been shown that predicting next-frame feature
map improves accuracy while maintaining fast processing
time [21].

This paper advances the idea of next-frame feature map
prediction [21] by utilizing probabilistic video-frame pre-
diction into online video object detection.
Next-frame prediction in videos. To successfully predict
future frames from given past frames, two main approaches
have been proposed: deterministic prediction and stochastic
prediction.

The video prediction by deterministic models generates
the next frame by using LSTM [46], ConvLSTM [39],
3D-Convolution [1, 61], and more complex recurrent mod-
els [6, 38]. Deterministic models tend to produce blurred
images because the output image is the average over all pos-
sible images. For this reason, separating a foreground object
from the background has been proposed for more accurate
generation [4, 16, 48, 50, 55].

Models with stochastic hidden variables such as VAEs,
have been proposed [3, 8, 32] to reduce uncertainty in accu-
racy that increases over time in deterministic models. These
models define a prior distribution for a set of latent variables
and allow different samples from these latent variables to
capture multiple outcomes. It has also been observed that
the mean-squared-error loss is based on Gaussian distribu-
tion and produces blurred output, so the use of an adversar-
ial loss with GAN is proposed [32].
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Our proposed method utilizes stochastic video prediction
methods [3,8,32] into video object detection via video rep-
resentation learning. Although CrevNet [61] suggests the
video representation learned through video prediction can
be directly used for object detection, we show in Section 5
that it is not the case.

3. Proposed method
We present our video object detection framework

that utilizes Stochastic Adversarial Video Prediction
(SAVP) [32]. Our model is modified from SAVP so that
it is able not only to predict future frames, but also to detect
objects in videos.

3.1. Stochastic adversarial video prediction

SAVP [32] combines GANs and VAEs. VAEs produce
diverse images while sampling but tend to produce blurry
images, while GANs produce clear images but suffer from
producing diverse images. Combining VAEs and GANs
thus benefits from their complementary strengths.

SAVP consists of a generator G and a discriminator D.
G is with an encoder-decoder structure conditioned with
past frames, and from a current frame and its latent codes at
the time, generates the next frame while D optimizes G ad-
versarially. SAVP possesses two distributions for sampling
the latent code: the prior distribution and the posterior one,
approximated by the learned encoder, in which the posterior
distribution is parameterized by a conditional Gaussian dis-
tribution using frames of adjacent time steps. At test time, a
random latent code z is sampled from the prior distribution
independently at each time step.The generator G takes the
previous frame and z, and then synthesizes a next-step fu-
ture frame. To generate the next frame, the frame generated
in the previous step is fed into G again, and the genera-
tion is repeated. During training, G is optimized to predict
videos that match the distribution of actual videos using the
discriminator D. The historical state is accessed via the re-
current neural networks in the generator G. SAVP also uses
separate discriminators D and DVAE, depending on the dis-
tribution used to sample the latent code.

3.2. Overall pipeline

The overall pipeline architecture of our proposed frame-
work is depicted in Fig 3. The proposed method consists
of five major components. They are (1) recurrent encoder
RE for feature extraction from each frame, (2) recurrent
decoder RD for generating feature maps from encoded fea-
tures, (3) detection head for detection,(4) a synthetic head
for generating an image from the decoded feature map, and
(5) a discriminator for discriminating the generated future
frames from the actual future ones.

We have two training steps and one inference step. Dur-
ing “Pre-training”, the model acquires the feature represen-

tation of videos by self-supervised learning through pre-
dicting future frames. The training method is essentially
the same as SAVP, but reconstruction of the current frame
is also performed for the “fine-tuning” step. Optimization
of the generated future frames is performed using a GAN.
“Fine-tuning” transfers the model to our downstream task,
i.e, detection, using the feature representations acquired in
the pre-training step. The difference from pre-training is
that the detection head is appended to the decoder.

During “Inference”, we do not generate future frames
but detect objects. Generating future prediction frames con-
tributes to acquire video representations during training, but
is not necessary for detection.

3.3. Our prediction and detection network

The task of future prediction takes the current frame xt

(at time t) as input with the past d frames {ci}t−1
i=t−d as the

context, and predicts the future frame x̂t+1 at time t. How-
ever, video object detection requires a detection result in the
current frame xt at the input time t (the output from the de-
coder must be at the current time t). Therefore, to combine
video object detection and future prediction, the model must
be able to decode feature maps for the current frame and the
next frame separately.

We design an encode-decoder network to decode the en-
coded features at each time independently. The network
has the recurrent encoder RE and recurrent decoder RD
as shown in Figure 3. The RE and RD are based on
ResNet [28] and Feature Pyramid Network (FPN) [33] re-
spectively. Two-layered ConvLSTMs [44] are added to the
outputs of each ResNet block (C3, C4, C5, P3, P4, P5). The
roles of ConvLSTMs in RE and RD are different. ConvL-
STMs in RE are used to generating temporally-aware fea-
ture maps [35], whereas those in RD are used to propagate
the information over time.

Using the feature map obtained from the encoder at time
t, the decoder at time t together with the synthetic head at
time t first reconstructs the current frame x̂t. Then, it sam-
ples the latent code zt and decodes feature maps with zt to
generate the next frame x̂t+1. The states of the recurrent
neural network in the decoder are propagated to account for
time-stamp information. The decoders at time t and t + 1
share their weights except the ConvLSTMs states. In order
to generate realistic images from the decoder, we append
the shared-weighted synthetic heads on top of the output of
P3. The synthetic head is a simple network consisting of a
convolution layer with 3-size kernel and 2-stride, instance
normalization [49], and ReLu, stacked together twice. The
output of the final convolution layer is set to 3 dimensions
for RGB images. To optimize the generated image, the cor-
responding ground truth image is resized to the P3 feature-
map resolution size.

To enable stochastic sampling for the future frame gen-
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Figure 3: The architecture of the proposed model. The model is pre-trained using the components in the orange-colored area,
and then fine-tuned using the whole components. The inference corresponds to blue-colored area.

eration, RD is conditioned on time-varying latent codes.
Those codes are sampled at training. Each latent code zt
is a 16-dimensional vector, and is passed through a fully-
connected LSTM to facilitate correlations in time of the
latent variables. The encoded latent codes are then con-
verted to match the 256 input dimensions of FPN, and added
channel-wisely to the all input of FPN during lateral con-
nections. Thus, the latent codes are added to the input of
FPN when generating the future frame stochastically, but
not when generating the current frame. FPN works as an
ordinary object detection module.

3.4. Pre-training loss

The current frame image is first reconstructed to en-
able the model to transfer it to both detection in the fine-
tuning step and future frame prediction. Then, the decoder
time stamp is increased to generate future frames. The loss
function for the pre-training step is almost identical to that
for the SAVP training [32]. The only difference is that
our loss involves the current frame reconstruction.We use
d = 10 frames for initialization to predict future as pro-
posed in [32].

The loss function of SAVP is defined with four weights
λi (i = {1, . . . , 4}) as follows:

Lsavp = λ1L1 + λ2LKL + λ3LGAN + λ4LVAE
GAN, (1)

where L1 is the L1 norm between the forecasted frames and
the ground truth, LKL is the KL divergence between the

prior and posterior distribution, LGAN is adversarial loss
for discriminator, and LVAE

GAN is analogous to LGAN except
which use latent codes sampled from the posterior distribu-
tion. See [32] for details of these terms. In order to optimize
the reconstructed current frame x̂t from the actual frame xt

at the time t, we employ L1 norm. The loss function Lvideo

for our pre-training is defined as:

Lvideo = Lsavp + λ5||xt − x̂t||1, (2)

where λ5 is the weights for reconstruction loss of the current
frame.

3.5. Fine-tuning loss

The pre-trained model will be optimized to be a model
for detection. Through fine-tuning, we train the whole
weights to fit for detection. Fine-tuning is the same as pre-
training except for detection loss and input. The loss for
detection defined in FCOS [47] is set to Ldet. As a result,
the loss function for the current frame in fine-tuning is

Lfinetune = αLvideo + βLdet, (3)

where α and β is the balance weights for Lvideo and Ldet,
respectively.

The difference of input is that in detection, the previous
frame may not be obtained due to the timing of video load-
ing, so we select a random value from [0 10] (we set d = 10)
and use the frame corresponding to the value.
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3.6. Inference step

The encoder and decoder inherit the ConvLSTMs state
from the previous frame except for the initial frame, and
the detection is performed sequentially using the encoder-
decoder with input frames. It is important to note that at the
inference step, we neither reconstruct the current frame nor
predict future frames. This is because the fine-tuned model
already acquires the video representation for detection. Re-
moving reconstruction and prediction functions also con-
tributes to faster inference.

4. Experiments

4.1. Dataset and Metric

ImageNet VID [42]: is a large-scale benchmark for video
object detection. It has 30 categories and contains 3,862
training and 555 validation videos with frame rates of 25
and 30 fps. We evaluate our method on the validation set
and use the mean average precision (mAP) as the evaluation
metric following widely adopted protocols in [63, 64].
VisDrone-VID2019 [62]: is a large-scale unmanned aerial
vehicle scene benchmark, which is more complex and
crowded than ImageNet VID. It includes 56 training, 7 val-
idation, and 16 test video clips with ten categories of ob-
ject instances from different cities.We use AP, AP50, AP75,
AR1, AR10, AR100, and AR500 metrics for evaluation.

4.2. Implementation details

We employ FCOS [47] as the baseline object detector in
our proposed model. On ImageNet VID, we use ResNet-
50 and ResNet-101 [28] with FPN [33] for the backbone
and insert ConvLSTMs as described in Section 3.3. We uti-
lize ResNet-101 as a backbone on Visdrone dataset for a
fair comparison with other methods. We follow the hyper-
parameters of FCOS [47] and the modifications [2]. The
input images are resized to have their smaller side to be
512 pixels on ImageNet VID and 800 pixels on VisDrone-
VID2019, respectively.

For pre-training, we follow SAVP [32] with SGD and
a batch size of 16 with pre-trained weights of ImageNet.
We set λ1 = 0.25, λ2 = 0.0375, λ3 = 0.3, λ4 = 0.3,
and λ5 = 0.25 empirically and use 16 dimensions of latent
codes. We utilize the discriminator D as proposed in [32].
We train our model for ten epochs to predict a 10-frame
forward future in total, with the learning rate of 10−4 and
10−5 in the first six and the last two epochs, respectively.

For fine-tuning, we set α = 1.0, β = 1.0. We then train
the pre-trained model for 5 epochs, with the learning rate
of 10−4 and 10−5 in the first 3.3 and the last one epoch,
respectively. Although we trained our model on two RTX
3090 GPUs, we evaluated the speed performance on two
2080 Ti GPUs for a fair comparison with other methods.

Table 1: Performance comparison with the state-of-the-art
online and real-time detectors on ImageNet VID val.

Models Backbone Base Detector mAP FPS Device

LMP [66] MobileNetV2 [43] RetinaNet [34] 64.2 29 GTX 1060
TSSD-OTA [9] VGG-16 [45] SSD [37] 65.4 21 Titan X
ROD-FMF [21] MobileNetV2 [43] SSD [37] 65.7 39 2080 Ti
VOD-MT [29] VGG-16 [45] SSD [37] 71.0 18 −

DFF [65] ResNet-101 [28] R-FCN [12] 73.1 20 K40
AdaScale [11] ResNet-101 [28] R-FCN [12] 75.5 21 1080 Ti

Attention-guided [58] ResNet-101 [28] R-FCN [12] 73.7 22 1080 Ti
LTLS [30] ResNet-101 [28] R-FCN [12] 77.2 23 Titan V

Heatmap-guided [57] ResNet-101 [28] CenterNet [18] 76.7 37 −
Ours ResNet-50 [28] FCOS [47] 73.1 54 2080 Ti
Ours ResNet-101 [28] FCOS [47] 78.0 39 2080 Ti

Table 2: Performance comparison with the state-of-the-art
models on VisDrone-VID2019 test.

Methods AP AP50 AP75 AR1 AR10 AR100 AR500

Faster R-CNN [41] 14.46 31.80 11.20 8.55 21.31 26.77 26.77
D&T [19] 17.04 35.37 14.11 10.47 25.76 31.86 32.03
FGFA [64] 18.33 39.71 14.39 10.09 26.25 34.49 34.89

FCOS(baseline) [47] 15.12 32.42 11.44 9.01 22.29 26.98 26.98
Ours 21.82 49.01 16.83 12.91 30.22 41.28 41.28
DBAI-Det [62] 29.22 58.00 25.34 14.30 35.58 50.75 53.67

4.3. Comparison with state-of-the-arts

ImageNet VID: We compare our method against several
online video object detectors. Table 1 shows their perfor-
mance comparison. We observe that with ResNet-101 back-
bone, our method surpasses the strong competitive detector,
Heatmap-guided [57] with faster processing speed.

Our method runs at 54 and 39 fps, positioning at the first
and second place with ResNet-50 and ResNet-101, respec-
tively. Despite the high-speed processing, it achieves an ac-
curacy of 73.1 mAP, which may be sufficient for reasonable
detection accuracy. A comparison between detectors capa-
ble of real-time processing confirms that our method runs at
high speed while maintaining high accuracy.

In particular, when compared with VOD-MT [29], which
is close in accuracy, we see that our method runs more than
twice faster. VOT-MT aggregates past feature maps to sta-
bilize detection, and takes time for each frame aggregation.
In contrast, our method learns a video representation in ad-
vance and transfers it to the detection task, so that no aggre-
gation is required for detection. This difference brings the
high accuracy of our method with excellent speed. More de-
tailed comparison with VOT-MT is presented in Section 4.4.

We visualize in Fig. 4 some of our results with those by
the original FCOS. We see that our method provides more
stable detection than the original FCOS. In particular, our
method is found to be robust to blurring and suppresses
class switching, achieving higher mAP as seen in Table 3.
VisDrone-VID2019: Table 2 shows performance compar-
ison. D&T [19] and FGFA [64] are methods to stabilize
the feature map of the still image detector [41] with tem-
poral information. We see that our model significantly im-
proves the accuracy from the baseline and outperforms the
compared methods. Our model runs at 23 fps. As a ref-
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Table 3: Ablation study of our model.
Methods mAP mAPs mAPm mAPf FPS

FCOS (baseline) [47] 68.7 79.3 68.5 43.6 56
model w/o prediction (+ConvLSTMs only) 70.1 80.0 68.7 44.5 54

model w/o pre-traing 71.6 83.1 69.0 47.1 54
complete model 73.1 83.3 71.7 52.7 54

complete model w/o GAN 71.7 81.5 69.6 48.2 54
complete model w/o VAE 70.7 80.9 69.2 44.9 54

erence, we show DBAI-Det [62] since it is ranked as the
first place at the VisDrone-VID2019 competition. Note that
DBAI-Det [62] combines heavy backbone [56] and several
methods [7, 13] for accuracy, and runs at less than 1 fps.

Fig. 5 visualizes the result on blur scene. We see that our
method detect target object robustly.

4.4. Detailed analysis on ImageNet VID

To confirm the effectiveness of the proposed method in
detail, we conducted ablation studies on the validation set of
ImageNet VID. We follow a motion-aware evaluation met-
ric in [64] to evaluate the performance on the categories of
slow, medium, and fast objects, where these three categories
are divided by their average IoU scores between objects
across nearby frames. Slow motion means the case where
IoU score is higher than 0.9, and fast motion means that IoU
score is lower than 0.7. Medium motion indicates the rest.
We note that mAPs, mAPm, mAPf represent mAP(small),
mAP(medium), mAP(fast), respectively.
Component ablation analysis. We evaluate the impact of
key components of our model on the detection accuracy; see
Table 3. Model w/o prediction exploits from past to cur-
rent frames such as [9] (we append ConvLSTMs only), and
model w/o pre-training represents the model is trained for
future prediction and object detection simultaneously with-
out pre-training, and the number of training iterations is the
same as for pre-training. The lower part of Table 3 shows
the models without using VAEs or GANs in the SAVP [32]
part. We see that model w/o pre-training outperforms model
w/o prediction, meaning that the accuracy is improved by
training the recurrent neural network to predict the future,
rather than simply propagating features from the past to
the present. We also see that our complete model signifi-
cantly outperforms the model w/o pre-training. This indi-
cates that learning the video representation through predic-
tion and transferring it to detection is a meaningful proce-
dure to improve detection accuracy. This is also supported
by the fact that the improved accuracy for fast objects is re-
markable because video representations for fast objects are
more sensitive changes in context, such as motion. When
GANs or VAEs are ablated, the accuracy drops, confirm-
ing that they are both important for using long-term future
predictions.
Fair comparison with the same baseline. To make com-
parison more fairly with the closely performing method
VOT-MT [29], we follow the same configuration of the

Table 4: Performance comparison of VOD modules with
VOD-MT [29] on RetinaNet and ResNeXt-101.

Methods mAP mAPs mAPm mAPf FPS

RetinaNet [34] 77.9 87.3 74.5 55.7 9.1
VOD-MT [29] 79.2 88.2 76.0 57.5 6.4

Ours 81.5 89.2 80.2 63.4 8.7

Table 5: Impact of the number of the future prediction.
predicted frames (T ) 1 3 5 7 10 15 20

mAP 71.9 72.3 72.5 72.8 73.1 72.9 73.2

detector and feature extractor as VOD-MT. Table 4 shows
the accuracy and speed comparison of VOD-MT under the
same detector, feature extractor, and input frame size. Both
methods have improved accuracy from the base detector,
but our method achieves higher accuracy and faster pro-
cessing speed. This is because our method just uses robust
feature representations for inference that are learned dur-
ing training while VOT-MT generates robust feature maps
at each inference.
Effect of KL divergence. We change KL loss weight λ2

to see how the weighting for VAE affects the detection
and generation. Fig. 6 shows under different λ2, the de-
tection accuracy and Structural Similarity Index Measure
(SSIM) [53]) computed with the ground truth in 10 future
frames. When λ2 is large (weighting for VAE is large), KL
loss prevents the generation as the regularizer (producing
poor SSIM). As λ2 becomes small, however, the detection
accuracy and the generated image become high until a cer-
tain point. Then, as λ2 becomes even smaller, KL loss does
not work well for detection while rendering becomes better
until some point and then gradually degraded. Therefore,
there is the trade-off and λ2 that compromises detection
and generation, which should be learned as a well-balanced
point. The frame generation accuracy does not increase
when the KL loss works well because images are gener-
ated stochastically, and they are structurally different from
the actual future ones, as seen at the bottom of the row.
Impact of prediction of future frame. We investigate how
much the long-term future predictions affect the detection
accuracy. Table 5 shows the detection accuracy under dif-
ferent number of generated frames during training. We see
that the accuracy gradually improves with longer future pre-
dictions and becomes saturated with about 10 frame predic-
tion. We confirm that 10 frames are effective and sufficient
for long-term prediction.
Comparison of stochastic and deterministic future pre-
dictions. The proposed method learns feature representa-
tion by stochastically predicting what is likely to happen in
the future using VAE. We evaluate how stochastic predic-
tion affects the acquisition of video representations with re-
spect to the size of training set (Fig. 7). As a comparison of
deterministic prediction, we also show the result without us-
ing VAE. Here, we change the ratio of training data against
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Figure 4: Visualization results on ImageNet VID val. The upper row of each sequence corresponds to our baseline, FCOS,
and the lower row corresponds to our proposals. Our network learns temporal context to provide significantly stable detection
with strict regression across frames.

Figure 5: Visualization results on VisDrone-VID2019 test. Our method detects objects with a high degree of confidence
even with blur, while the baseline method tends to be unstable due to motion blur in drone images.

the training set of ImageNet VID from 0.5 to 1.0 by 0.25.
The number of iterations in training is adjusted not to be af-
fected by the ratio. Fig. 7 shows that stochastic prediction
tends to be more accurate as the training data size increases
compared to deterministic prediction. We also observe that
while the final value of the loss function for deterministic
prediction does not change along the training data size, that
for stochastic prediction becomes increased. This suggests
that stochastic prediction leads to increasing the model ca-
pacity for detection by avoiding overfitting that arises for
deterministic prediction due to redundant training data [54].

Impact of pre-training dataset. Our model does not re-
quire an annotated dataset for pre-training. In order to in-
vestigate how the size and variation of datasets used for

Table 6: Performance comparison under different pre-
training datasets.

Pre-training dataset ImageNet VID YouTube-BB BDD100K

mAP 73.1 (+3.5) 76.6 (+2.1) 75.2

pre-training affect detection accuracy, we exploit two video
datasets: YouTube-BB [40] and BDD100K [60]. YouTube-
BB is a new large-scale natural scene dataset similar to Im-
ageNet VID and consists of about 380,000 15-20 second
videos extracted from publicly available YouTube videos.
BDD100K is the largest and most diverse open-driving
video dataset to date, consisting of 100,000 videos recorded
in different weather conditions such as clear, cloudy, and
rainy, and at different times of the day and night.
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Figure 6: Effect of varying the KL loss weights on the de-
tection and generation accuracy, showing the synthesized
10th frames corresponding to the weights and the corre-
sponding ground truth.

Figure 7: Accuracy impact of different methods of generat-
ing future forecasts

Table 6 shows the detection accuracy under different
datasets for pre-training. Without any effort, pre-training
with YouTube-BB dataset improves the accuracy by 3.5
points. This is a significant gain without increasing any
cost of inference. Pre-training with BDD100K also shows
the improvement in accuracy by 2.1 points. This inter-
estingly indicates that even pre-training on a completely
different-looking dataset improves accuracy. These obser-
vations mean that there is great potential for accuracy im-
provement by using a larger amount of training data for
learning video representations through future prediction. A
more detailed analysis in this way is left for future work.

5. Discussion
CrevNet [61] is a deterministic model to generate future

images. It focuses on predicting future frames as accurately

Table 7: Prediction accuracy in SSIM on Caltech Pedestrian
dataset. Higher SSIM means better prediction accuracy.

Model Next-Frame 3rd 6th 9th

CrevNet [61] 0.92 0.83 0.73 0.67
Ours 0.89 0.79 0.69 0.65

Table 8: Detection accuracy in mAP on KITTI

Methods
Car Pedestrian Cyclist

mAP
Easy Mod Hard Easy Mod Hard Easy Mod Hard

CrevNet [61] 91.9 91.8 86.0 89.7 83.2 75.8 87.3 80.9 72.2 84.3
Ours 95.3 93.3 91.1 88.8 80.5 75.9 89.1 81.2 73.1 85.4

as possible by minimizing information loss during feature
extraction, but its application to detection is also suggested.
Here, we evaluate the accuracy of future image generation
and detection to see whether deterministically predicting
accurate future images is really required for accurate de-
tection.

We follow the evaluation in CrevNet [61]. To be more
specific, we pre-trained our model for video prediction on
KITTI [22]. The accuracy of future image generation by the
pre-trained model is then evaluated on the Caltech Pedes-
trian dataset [17] using SSIM [53]. Next, we fine-tuned
the model using the detection data on the KITTI. Since
the training set of the KITTI dataset provides unlabeled
frames of the previous three frames for each annotated de-
tection frame and no future frames, the fine-tuning step of
our method is purely for the detection part.

Tables 7 and 8 show accuracy of generating future im-
ages on Caltech, and the detection accuracy on KITTI. We
see that while our method is less accurate than CrevNet
in terms of generating future images in both the short and
long-term, it is better in terms of detection; our method sig-
nificantly outperforms CrevNet. We reason that the video
representation learned for generating accurate future im-
ages does not match the representation for object detec-
tion. Therefore, some uncertainty in video representation
brought by stochastic prediction is needed to increase the
model capacity for other tasks. Fine-tuning to object detec-
tion makes use of this capacity to adjust the video represen-
tation to detection.

6. Conclusion
We proposed a framework that utilizes stochastic next-

frame video prediction into online video object detection.
Our model first learns the video representation through fu-
ture frame prediction and then fine-tunes the representation
for object detection via optimizing the appended detector
module as the downstream task. By using a single-stage de-
tector, our method achieved 73.1 mAP% on the ImageNet
VID dataset with a speed of 54 fps. This pushes forward the
trade-off between accuracy and speed.
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