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a b s t r a c t 

This paper proposes a method exploiting temporal context with an attention mechanism for detecting 

objects in real-time in a live streaming video. Video object detection is challenging and essential in prac- 

tical applications such as robotics, smartphones, and surveillance cameras. Although methods have been 

proposed to improve the accuracy or run-time speed by exploiting temporal information, the trade-off

between them tends to be ignored. We thus focus on the trade-off between accuracy and speed, and 

propose a method to improve the accuracy by aggregating the past information from a lightweight fea- 

ture extractor with an attention mechanism. Evaluations on the UA-DETRAC and ImageNet VID datasets 

demonstrate our model’s superior performance to state-of-the-art methods on live streaming real-time 

object detection. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Object detection in images or video is one of the fundamen- 

al problems in computer vision. In particular, object detection in 

ideos has been of more interest since it has a wide range of appli-

ations, including robotics, vehicles, smartphone, and surveillance 

ystems. In practical scenarios, it is crucial to be able to cope with 

ive stream videos in which frames flow one after another and to 

e able to perform object detection in real-time. 

Thanks to deep convolutional neural networks (CNNs), 

till-image object detectors [1–6] provide reasonably high- 

erformances in detection in recent years. However, directly 

pplying these detectors to videos faces new challenges such as 

otion blur, occlusion, out-of-focus, and compression artifacts. 

Therefore, video object detectors [7–11] have been actively 

tudied to improve the detection performance by utilizing tem- 

oral consistency over the video. Some methods [9,12] have been 

roposed to stabilize detection by utilizing not only past and 

resent frames but also future ones. 

In the case of live streaming videos, however, future informa- 

ion cannot be utilized. Improving the still-image detectors with 

eometrical constraints [13] or the cascade strategy [14] has been 

roposed for frame-by-frame object detection. Such approaches 
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mprove the accuracy while they are limited to run in real- 

ime. Some methods have been proposed to deal with real-time 

nd live-stream video using recurrent neural network [15,16] and 

low [10] information. However, due to the emphasis on speed, the 

ccuracy has been neglected there. There are few studies from the 

erspective of real-time and live streaming, which is necessary for 

ractical applications. 

To achieve accurate real-time object detection in live-stream 

ideos, we aim to generate enriched feature maps by aggregating 

oarse feature maps in previous frames, which are extracted using 

 lightweight feature extractor, by using an attention mechanism 

ffectively. To this end, we propose an encoder-decoder based net- 

ork, Temporal Feature Enhancement Network (TFEN), that utilizes 

i) spatial information from coarse spatial features and (ii) tempo- 

al information available from the live stream of video data. The 

ncoder consists of recurrent convolutional units dealing with both 

patial and temporal features. The decoder has the external mem- 

ry to store feature maps generated in the past to utilize tempo- 

al information and exports densely aggregated feature maps us- 

ng attention weights. In this way, TFEN enriches coarse features 

ith spatial and temporal information so that the trade-off be- 

ween accuracy and speed is considerably enhanced. We evalu- 

te TFEN on the UA-DETRAC dataset [17] and the ImageNet VID 

ataset [18] using MobileNetV2 [19] as the feature extractor and 

ascade R-CNN as the object detector. Experimental results demon- 

trate that TFEN performs in real-time while keeping comparable 

ccuracy with state-of-the-art. Fig. 1 and Fig. 10 show some detec- 

https://doi.org/10.1016/j.patcog.2022.108847
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Fig. 1. Examples of the detection results by TFEN on the UA-DETRAC. A bounding box is plotted if its confidence score is larger than 0.4. 
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ion results by TFEN on the UA-DETRAC and the Imagenet VID. We 

ee that TFEN successfully detects most of the objects in different 

cenes, especially even when heavy and partial occlusions occur, 

lso in a rare pose. 

Additionally, unlike other methods [8–10] that utilize optical 

ow to warp feature maps across neighboring frames, TFEN en- 

irely relies on only appearance information from image feature 

xtractors. The architecture of TFEN is thus simple to design. It en- 

bles us to efficiently optimize its loss function because we do not 

uffer from any disturbance caused by differences between appear- 

nce features and optical flow features. 

The rest of this paper is organized as follows. We briefly review 

he related work in Section 2 . Then, we present the details of our

roposed method in Section 3 . Section 4 discuss our experiments. 

ection 5 draws the conclusion. We remark that this paper extends 

he work reported in [20] . Our main extensions in this paper are 

eepening the discussion on related work and adding more exper- 

ments to demonstrate the effectiveness of TFEN thoroughly. 

. Related work 

Object detection is the task of estimating the location and cat- 

gory of objects appearing in a given image or video. The pipeline 

f object detection algorithms can be roughly divided into the fea- 

ure extraction stage and the detection stage. The former generates 

eature maps from images or videos, while the latter utilizes the 

eatures for detection. Numerous studies to improve accuracy have 

een reported from the above two perspectives. 

From the viewpoint of feature extraction, they focus on ob- 

aining good feature maps from still images or videos by improv- 

ng backbones or aggregating features from neighboring frames. In 

erms of the detection stage, the research focuses on detecting ob- 

ects from the obtained feature maps precisely. Some works exploit 

ascade the strategy, geometric information, and tracking mecha- 

ism to boost their detection accuracy. 

Since this work focuses on generating “good” feature maps 

rom a video, we briefly review works for the detection stage in 

ection 2.1 first, and then thoroughly survey methods for the fea- 

ure extraction stage in Section 2.2 . 

.1. Detection stage 

Before CNNs have dominated recent progress in object detec- 

ion, deformable part-based models [21] successfully detect tar- 

et objects by finding object parts and combining their spatial in- 
2 
ormation. Since CNNs [19,22,23] have shown their great perfor- 

ance in image recognition, the majority of work on still-image 

bject detectors use CNNs. Moreover, research has been developed 

n two broad ways to detect objects well using feature maps from 

NNs. One is the region-based two-stage approach containing pro- 

osal and classification steps, popularized by R-CNN [1] and its 

amilies [2,4,24,25] . The other is the detector based one-step ap- 

roach [3,5,26] , directly predicting boxes at fixed anchor positions. 

his approach includes SSD [3] , YOLO [27] , and YOLOv3 [5] . 

In addition to the still-image detector approach, several meth- 

ds have been proposed for object detection in videos. Evolv- 

ng Boxes (EB) [14] improves its region proposal network with 

 cascade strategy, refining object boxes. GP-FRCNN [13] , on the 

ther hand, proposes geometric proposals for Faster R-CNN [25] , 

hereby they re-rank the geometric object proposals with an ap- 

roximate geometric estimate of the scene to remove false posi- 

ives. Foreground Gating and Background Refining Network (FG-BR 

et) [28] incorporates the background subtraction method to ig- 

ore a non-interested region efficiently for false-positive elimina- 

ion. TCNN [12,29,30] proposed tubelet proposals to improve detec- 

ion accuracy considering temporary consistency within a tracklet. 

&T [7] proposed to jointly learn ROI tracker along with detector 

here the tracker is also exploited to link the cross-frame boxes. 

ther methods [31] have also been proposed to boost the weak 

onfidence of detection by using the detection results of neighbor- 

ng frames as the post-processing step. Although these methods 

ave contributed to improving accuracy, they have not achieved 

eal-time processing. 

.2. Feature extraction stage 

It is vital in the object detection task to extract “good” fea- 

ure maps from images and frames. CNN-based detectors popu- 

arly use a classifier developed in image classification task such 

s VGG [32] and ResNet [22] to extract feature maps for detec- 

ion [1,3,24] . Since a feature extractor based only on image clas- 

ification may not provide detailed features, feature extractors for 

ideo object detection have also been proposed to capture the de- 

ection target more clearly [33,34] . It is sometimes difficult to ob- 

ain clear feature maps in video, in particular, live-stream video, 

ue to blur, motion blur, and rare poses. Therefore, methods have 

een proposed to utilize feature maps of neighboring frames in ei- 

her an offline manner or a live manner. 

The offline methods deal with how to aggregate feature maps 

rom past and future frames to refine them to improve detec- 
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ion accuracy. FGFA [9] exploits flow information to have pixel-to- 

ixel correspondence among nearby frames including the past and 

he future. MANet [35] further utilizes flow information to cap- 

ure object motion. They have shown the importance of feature 

aps from nearby frames; however, they require additional net- 

orks and training costs for flow information. STSN [36] , on the 

ther hand, uses deformable convolutions across time to align the 

eatures from the adjacent frames. STMN [37] computes the corre- 

ation between neighboring frames and introduces a memory mod- 

le to aggregate their features. RDN [38] and SELSA [39] focus on 

he object relations to align object features for feature aggregation. 

EGA [40] proposed to aggregate feature maps globally in a video 

s well as locally. These methods achieve high detection accuracy; 

owever, they use a computationally expensive feature extractor 

nd future information, which impede real-time and live stream- 

ng detection. 

The methods for live stream video are similar to the offline 

ethods in that they utilize feature maps of past frames for de- 

ection in the current frame, but the main difference is whether or 

ot they run lively in real time. DFF [8] and Flow-guided [41] ac- 

elerate detection by running the detector on sparse key-frames 

nd using optical flow to generate the remaining feature maps. 

STM-SSD [15] , Memory-guided [42] and TSSD(-OTA) [16,43] prop- 

gate feature maps across frames with convolutional recurrent 

eural networks. Although their models are faster than existing 

ethods, the performance is much degraded. 

In contrast to the above mentioned works, we focus on enrich- 

ng feature maps from coarse ones extracted using a lightweight 

eature extractor to achieve both real-time speed and high- 

erformance in detection accuracy. To this end, we address the 

ssue by efficiently aggregating the coarse feature maps obtained 

rom a lightweight feature extractor using the attention mecha- 

ism from the past to the present to enrich feature maps. Very 

ecently, VOD-MT [44] was proposed to improve the feature map 

sing an attention mechanism similar to our method. In VOD-MT, 

eature maps are collected for the current frame and multiple past 

rames with an attention mechanism frame by frame. The cru- 

ial difference of our proposed method from VOD-MT is that our 

ethod collects features by computing which frames in the past 

o focus on in a one-shot manner, allowing us to aggregate feature 

aps even faster. 

. Proposed model 

.1. Architecture 

Figure 2 shows the overall architecture of our proposed TFEN at 

revious time t − 1 and current time t where TFEN is connected 
Fig. 2. Architecture of ou

3

o the feature extractor and the object detector. The skip connec- 

ion is employed from the feature extractor to the object detector 

o retain information from the feature extractor. We denote by F t 
he feature maps extracted from the feature extractor at time t , 

hich is fed to TFEN. As the lightweight feature extractor, we em- 

loy MobileNetV2 because its computational cost is low. 

Our proposed TFEN receives extracted feature maps F t ’s and en- 

iches them to pass to the object detector (see the rectangle area 

n pink in Fig. 2 ). It consists of the spatiotemporal encoder and the 

emporal attention decoder having the external memory. 

For the frame at time t , the spatiotemporal encoder creates 

emporally-aware feature maps ˜ F t using recurrent convolutional 

eural networks similarly to [15] . It exploits the spatial attention 

odule BAM [45] and ConvGRU [46] . BAM refines feature maps 

 t by inferring simple spatial and channel attention, while Con- 

GRU uses spatiotemporal information for temporally-aware fea- 

ure maps. 

The temporal attention decoder, on the other hand, utilizes 

oth the current time feature maps F t and the external mem- 

ry which stores the temporally-aware feature generated in the 

ast m frames: { ̃  F i } t−m +1 ≤i ≤t := { ̃  F t , ̃  F t−1 , . . . ̃  F t−m +1 } . Then it outputs 

ensely aggregated feature maps according to the attention coeffi- 

ient calculated in the decoder. 

We adopt a residual learning scheme [22] to facilitate the gra- 

ient flow. The aggregated feature maps (called enhanced feature 

aps) are fed to the object detector. We detail the encoder and the 

ecoder in the following subsections. 

.2. Spatiotemporal encoder 

Our encoder is designed for extracting spatiotemporal informa- 

ion from feature maps F t ’s coming from the feature extractor. As 

hown in Fig. 3 , it consists of BAM [45] and ConvGRU [46] . BAM is

 simple and effective attention module, which infers an attention 

ap along two separate pathways: channel and spatial. ConvGRU 

s recurrent convolutional units that are able to deal with both spa- 

ial and temporal features. 

First, for given input feature maps F t ∈ R 

C×H×W at time t , BAM 

nfers spatial attention maps M( F t ) ∈ R 

C×H×W where C, H, W denote 

he number of channels, the horizontal and vertical sizes of feature 

aps, respectively. The refined feature maps F t 
′ are computed as 

F t 
′ = F t + F t � M( F t ) , (1) 

here � denotes the element-wise multiplication. We introduce 

he compressibility value p to reduce the channels of F ′ t by ap- 

lying the 1 × 1 convolution operation to have F ′′ t ∈ R 

pC×H×W . We 

hen feed F ′′ t into ConvGRU to store temporal information with hid- 

en state. See [46] for details on ConvGRU. The output of ConvGRU 
r proposed TFEN. 
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Fig. 3. Architecture of the spatiotemporal encoder. 

Fig. 4. Architecture of the temporal attention decoder. 
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I

t

s fed into the Rectified Linear Unit (ReLU) to output temporally- 

ware feature maps ˜ F t which are saved in the external memory. 

.3. Temporal attention decoder 

The temporal attention decoder is the most important, and its 

rchitecture is shown in Fig. 4 . Our temporal attention operation is 

imilar to dense feature aggregation [7]. At the time t , the decoder 

erforms multiple dense feature maps aggregation by summing all 

he temporally-aware feature maps { ̃  F i } t−m +1 ≤i ≤t based on soft at- 

ention weights 1 . The weights determine which time of temporally 

ware feature maps should be focused. 

Soft attention weights for time are calculated through the ten- 

or computed from 

˜ F t and current time feature maps F t . The 1 × 1 

onvolution is first applied to F t to adjust its size, and then its out- 

ut is concatenated with 

˜ F t in the channel direction. Transforming 

peration with the stacked convolution layers and ReLU is applied, 

nd then global average pooling (GAP) [47] and the softmax func- 

ion are applied to have soft attention weights for time. The output 

hannel of the first convolution layer and the second one depicted 

n Fig. 4 are pC and m , respectively. 

The computed soft attention weights are used for tensor-wise 

roducts with all ˜ F i in { ̃  F i } t−m +1 ≤i ≤t stored in the external mem- 

ry. Then, the element-wise summation of tensors and 

˜ F t are fed to 

onvGRU followed by ReLU. The hidden state of ConvGRU is initial- 

zed by ˜ F t . The 1 × 1 convolution operation is next applied to adjust 

he channels of feature maps to export enhanced feature maps ˆ F t , 

hich are forwarded to the object detector. 

.4. External memory 

Our external memory consists of a data buffer and a set of 

rite and Read operations to access. The data buffer stores the past 

emporally-aware feature maps { ̃  F i } t−m +1 ≤i ≤t where m is the num- 

er of frames to be stored. 

The data structure inside the memory uses a first-in-first-out 

ueue. Therefore, older temporally-aware feature maps are pushed 

ut over time as new ones are written to the memory. With the 
1 Although the objects can be spatially displaced between frames, the impact of 

isplaced objects can be negligible in short-term aggregation. Indeed, we used m = 

 in our experiments, meaning about 120 msec . Moreover, the aggregated feature 

ap is used as a state of ConvGRU and, thus, the effect of displaced objects across 

rames on the feature map is indirect and insignificant. 

w

4

a

l

4 
rite operation, the latest temporally-aware feature maps are en- 

ueued into the buffer after the oldest maps are discarded. The 

rite operation allows the decoder to access all the tensors. 

.5. Loss function 

Since all the modules described above are differentiable, TFEN 

an be trained in an end-to-end manner. We follow the Cascade R- 

NN loss proposed in [4] for multi-stage classification and bound- 

ng box regression. This is because we employ the conventional 

ascade R-CNN as the object detector in our experiments. 

At each stage, the detector head predicts the classification score 

nd bounding box regression offset for all sampled RoIs. The over- 

ll loss function takes the form of multi-task learning: 

 = 

S ∑ 

s =1 

(L s loc + L s cls ) , (2) 

here L s 
loc 

and L s 
cls 

are the losses of the bounding box predictions 

nd classification prediction at stage s , and S is the total number 

f multi-stages. We follow [4] and set S = 3 . 

. Experiments 

.1. Datasets and evaluation metrics 

We evaluated the proposed model on two datasets. One is 

he UA-DETRAC dataset [17] for surveillance, and the other is the 

mageNet VID dataset [18] for natural scenes. The UA-DETRAC 

ataset [17] was published as a large-scale benchmark for vehicle 

etection in video. It offers challenges such as smaller object sizes 

nd higher resolution frames. The ImageNet VID dataset [18] , on 

he other hand, provides various challenges for general purposes 

uch as motion blur and occlusion. 

.1.1. Datasets 

UA-DETRAC dataset [17] contains 100 video sequences corre- 

ponding to more than 140,0 0 0 frames of real-world traffic scenes. 

ore than 1.2 million vehicles are labeled with bounding boxes in 

his dataset. The videos are taken at 24 different locations in Bei- 

ing and Tianjin in China and recorded at 25 fps, with the reso- 

ution of 960 × 540 pixels. There are 60 videos in the training set 

nd 40 videos in the test set. 

ImageNet VID dataset [18] is one of the large-scale benchmarks 

or video object detection, and it contains 3862 training videos and 

55 validation videos with annotated bounding boxes of 30 classes. 

mageNet VID consists of a variety of videos collected from the In- 

ernet. Hence, it is suitable for a robust object detection task for a 

ide range of video resolutions and frame-rates. 

.1.2. Evaluation metrics 

The evaluation metric for the UA-DETRAC dataset follows the 

verage precision (AP) score proposed in the PASCAL VOC chal- 

enge [48] and use the IoU threshold of 0.7. Note that while the 
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Table 1 

AP v.s. FPS under different com pressibility p of the output 

channel dimension on UA-DETRAC dataset. 

p 1.0 0.7 0.5 0.3 0.1 

AP[%] 84.12 82.77 82.40 76.53 73.42 

FPS 40.92 42.53 43.96 46.13 49.32 

Table 2 

mAP v.s. FPS under different com pressibility p of the output 

channel dimension on ImageNet VID dataset. 

p 1.0 0.7 0.5 0.3 0.1 

mAP[%] 69.4 69.1 68.9 67.4 65.1 

FPS 41.43 43.02 44.96 46.65 49.87 

Fig. 5. Soft attention weights used in the temporal decoder. 
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ASCAL VOC challenge uses the IoU threshold of 0.5, the UA- 

ETRAC dataset requires object detection at a more precise loca- 

ion. For ImageNet VID dataset’s evaluation, the detection accu- 

acy is measured by the mean average precision (mAP) at the IoU 

hreshold of 0.5. 

.2. Implementation details 

We employed MobileNetV2 [19] as the feature extractor and 

ascade R-CNN [4] as the object detector. We re-implemented the 

ascade R-CNN network with the pre-trained MobileNetV2 in Py- 

orch [49] and regarded it as our baseline model. 

Each of the datasets provides only two sets: a training set and a 

est (or validation) set; we split the training set into mini-training 

nd mini-validation sets at the ratio of 8 to 2. For data augmenta- 

ion, a random horizontal flip was adopted during training. 

In order to train TFEN, we use a multistep training strategy. 

amely, we first fine-tune our baseline model to the dataset do- 

ain as a static image detector. In the next step, we initialize the 

eights of the feature extractor and the object detector with the 

eights of the fine-tuned baseline model while we randomly ini- 

ialize the weights of the feature enhancement network. We then 

rain all the weights together in an end-to-end manner. 

In the first step, we fine-tuned our baseline model on all the 60 

ideos in UA-DETRAC training set for the UA-DETRAC dataset. For 

mageNet VID dataset, ImageNet DET dataset [18] was employed as 

raining assistance. The 30 categories in VID dataset are a subset of 

he 200 categories in the DET dataset. Therefore, following practi- 

als [7,50] , we trained the model with VID and DET (only using 

he data from the 30 VID classes). We trained it in 36 epochs us- 

ng asynchronous gradient descent with 0.9 momentum, 0.0 0 05 wt 

ecay, in a batch size of 4 images on 2 GPUs for both the dataset.

he initial learning rate was 0.005 and 0.01 on UA-DETRAC dataset 

nd ImageNet VID dataset, respectively. And we decreased the rate 

y 0.1 after 18 and 30 epochs. 

In the second step, we fine-tuned the model injected TFEN in 

 temporal manner. The initial learning rate was set to 0.001 for 

oth datasets, and we decreased it in the same way as the baseline 

odel. For the data augmentation, we adapted the random hori- 

ontal flip for the UA-DETRAC dataset. Following the common data 

ugmentation in the ImageNet VID dataset, we adapted random 

ample crop, random horizontal flip, and photometric distortions 

s in [3,42] for the ImageNet VID dataset. 

We used a PC with Intel 3.9GHz Xeon W-2123 CPU, NVIDIA RTX 

080 Ti GPU with 11 GB Memory, and 64 GB of RAM. The experi- 

ents are executed with cuDNN v7.6 and CUDA 10.1. Our proposed 

FEN ( m = 4 ) runs in 29.11 and 29.02 fps on UA-DETRAC and Ima-

eNet VID datasets, respectively. 

.3. Model design parameter analysis 

We first experimentally investigated the optimal channel com- 

ressibility and the number of frames stored in the external mem- 

ry in terms of the trade-off between speed and accuracy. This 

llows us to fix the parameters not determined through training 

FEN. 

.3.1. Bottleneck dimension 

We analyzed the impacts of the ConvGRU output channel di- 

ension on accuracy and speed. In this experiment, we changed 

he compressibility p, which defines the number of output chan- 

els of feature maps in the spatiotemporal encoder, from 1.0 to 0.1. 

e remark that we fixed the number m of frames in the external 

emory to four and used FP16 due to our GPU memory constraint. 

e also remark that the processing speed of models using FP16 
5 
ends to be faster than FP32 since the computation can be done 

fficiently using Tensor Core units on GPUs. 

Tables 1 and 2 show the impacts on accuracy and speed under 

ifferent p on the UA-DETRAC and ImageNet VID datasets. We ob- 

erve that the accuracy is decreased by compressing the feature 

ap while the processing time and the model capacity are re- 

uced. We also see that the accuracy remains almost constant up 

o p = . 5 , then drops. This is applied to both datasets. Accordingly,

e confirm that when aggregating feature maps from the past, it 

s unnecessary to use the actual feature maps obtained from the 

rames and that it is possible to reduce the weight to some extent. 

rom this experiment, we may conclude that the compressibility 

p controls the trade-off between detection speed and accuracy of 

FEN and that p = . 5 is the best choice. 

.3.2. Number of frames in attention decoder 

We evaluated the number m of frames to be stored in the ex- 

ernal memory. Since four frames are maximum using FP32 to ac- 

ommodate in our GPU memories, we used FP16 in this experi- 

ent so that we can accommodate up to 8 frames. We changed 

 from 2 to 8 and computed the accuracy (AP or mAP) and fps. 

e also computed soft attention weights to see temporally-aware 

eature maps of which frames are really focused on to derive the 

nhanced feature maps. 

Fig. 6 illustrates accuracy and fps under different m on the UA- 

ETRAC and ImageNet VID datasets, respectively. Fig. 5 shows the 

verage of soft attention weights when m = 8 . We note that the 

orizontal axis shows the offset from the current frame, meaning 
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Fig. 6. Accuracy v.s. FPS under different number m of frames to be stored in the external memory. 

Fig. 7. Example detection results of Baseline and TFEN ( m = 2 , 4 , 6 , 8) for frames with lots of blur on ImageNet VID dataset. A bounding box is plotted if its confidence score 

is larger than 0.4. 
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hat 0 indicates the current feature map, and 7 indicates the fea- 

ure map of the last frame in the external memory. 

We see that from Fig. 6 the accuracy tends to be improved 

y increasing the number of frames and is saturated with m = 6 

n both the datasets. The run-time speed, on the other hand, 

ecreases as m increases. We may conclude that m = 4 , 5 or 6

s a good compromise as the trade-off between accuracy and 

peed. 

Fig. 5 shows that the weight for the current frame is most 

ignificant, which is represented as 0 in the horizontal axis, and 

eights for the last 3 and 4 frames are dominant. It also shows 

hat even if we store eight frames in the external memory, the 

rames that are really used in the computation are the last 3 or 

 frames. 

Figure 7 visualizes some detection results by TFEN ( m = 

 , 4 , 6 , 8 ) where lots of blur is present due to object or camera

otion. We can see that the detection’s confidence and location 

ecome more stable by aggregating over longer periods ( m = 8 

s better than m = 4 , 6 , for example). However, when comparing

he improvement between m = 2 and m = 4 with that between 

 = 4 and m = 8 , we see that the improvement between m = 4

nd m = 8 is smaller and is not significant. 

The above observation indicates that storing more than five 

rames in the external memory results in just taking run-time 

hile it does not contribute to improving accuracy much. Accord- 

ngly, we can conclude that in practice, m = 4 is the best choice in

erms of accuracy and speed. 
6 
.4. Quantitative comparison with state-of-the-art methods 

We set m = 4 and p = 0 . 5 according to the above experi-

ental results and compared the average precision (AP) and the 

ean average precision (mAP) of TFEN with the state-of-the-art 

ethods. 

.4.1. Comparison on UA-DETRAC 

Table 3 shows the performance comparison on UA-DETRAC. 

e trained and evaluated TSSD [16] with the UA-DETRAC dataset 

rom the official code. We re-implemented VOD-MT by ourselves 

ased on [44] (referred to as VOD-MT � ) because the code is not 

ublicly available. We remark that most of the published works 

n UA-DETRAC benchmarks are for still-image object detection. 

e also remark that CSP, RD 

2 , ExtendNet, IMIVD-TF, and MY- 

LO are not available as published papers up to now, and thus 

e used their reported scores and regard them just as reference 

cores. 

SpotNet performs best among the methods; however, it utilizes 

 heavy backbone (namely, Hourglass-104 [54] and cannot run in 

eal-time. Table 3 shows that TFEN ranks at the top among all 

ethods except for SpotNet on the easy and sunny subsets. We 

lso see that TFEN outperforms VOD-MT � by large margins in ac- 

uracy and speed. MSVD_SPP achieves better accuracy on almost 

ll subsets, while TFEN achieves comparable accuracy with more 

han three times faster processing speed. The gap between TFEN 

nd the other methods except for TSSD is significant in speed but 
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Table 3 

Comparison of AP scores [%] on UA-DETRAC under various environmental conditions. Bold faces are the top performance on each subset. Methods in the first 

block are for still images. The methods in the second block are for videos. The bottom block lists unpublished methods and thus shows just the reference 

scores. ( ∗ is tested by ourselves; � is our own implementation.) 

Method Backbone Overall Easy Medium Hard Cloudy Night Rainy Sunny FPS GPU 

DPM [21] - 25.70 34.42 30.29 17.62 24.78 30.91 25.55 31.77 0.17 N/A 

ACF [51] - 46.35 54.27 51.52 38.07 58.30 35.29 37.09 66.58 0.67 N/A 

R-CNN [1] - 48.95 59.31 54.06 39.47 59.73 39.32 39.06 67.52 0.10 Tesla K40 

CompACT [52] - 53.23 64.84 58.70 43.16 63.23 46.37 44.21 71.16 0.22 Tesla K40 

Faster R-CNN [25] VGG-16 [32] 58.45 82.75 63.05 44.25 62.34 66.29 45.16 69.85 11 Titan X 

GP-FRCNN [13] VGG-M [32] 76.57 91.79 80.85 66.05 85.16 81.23 68.59 77.20 4 Tesla K40 

EB [14] VGG-16 [32] 67.96 89.65 73.12 54.64 72.42 73.93 53.40 83.73 11 Titan X 

YOLOv3-SPP [34] Darknet-53 [5] 84.96 95.59 89.95 75.34 88.12 88.81 77.46 89.46 6–7 Titan Xp 

MSVD_SPP [33] Darknet-53 [5] 85.29 96.04 89.42 76.55 88.00 88.67 78.90 88.91 9–10 Titan Xp 

FG–BR_Net [28] ResNet-18 [22] 79.96 93.49 83.60 70.78 87.36 78.42 70.50 89.89 10 Tesla M40 

SpotNet [53] Hourglass-104 [54] 86.80 97.58 92.57 76.58 89.38 89.53 80.93 91.42 N/A GTX 1080 Ti 

3D-DETNET [55] Darknet-Conv23 [55] 53.30 66.66 59.26 43.22 63.30 52.90 44.27 71.26 26 N/A 

TSSD 

∗ [16] VGG-16 [32] 57.16 81.06 62.07 43.14 57.59 63.87 44.98 67.73 32 RTX 2080 Ti 

VOD-MT � [44] VGG-16 [32] 67.22 82.81 74.36 55.29 71.43 66.79 64.16 70.82 14 RTX 2080 Ti 

TFEN MobileNetV2 [19] 82.42 97.40 88.90 72.18 87.54 82.41 72.32 90.78 29 RTX 2080 Ti 

CSP [56] ResNet-50 [22] 77.67 93.65 83.67 64.54 89.66 86.81 61.39 80.63 4 Tesla K40 

RD 2 [57] N/A 85.35 95.80 89.84 76.64 89.67 86.59 78.17 90.49 N/A Tesla P40 

ExtendNet [57] N/A 83.59 95.46 88.75 73.36 86.89 85.05 76.75 90.77 45 Titan X 

IMIVD-TF [57] N/A 85.67 96.32 91.17 75.45 87.02 88.93 80.60 89.69 1 N/A 

MYOLO [57] N/A 83.50 95.15 88.18 73.99 88.58 83.38 77.06 88.37 7 N/A 

Table 4 

Performance comparison with state-of-the-art end-to-end models for live-streaming videos on ImageNet VID validation set. 

Method 

Components Performances 

Backbone Feature Aggregation? Attention? RNN? mAP FPS (Device) 

TCNN [29] DeepID [58] + Craft [59] � 61.5 N/A (N/A) 

D&T [7] ResNet-101 [22] 78.7 8 (Titan X) 

LSTM-SSD [15] MobileNetV1 [60] � 54.4 15 (Pixel 2) 

Memory-guided [42] MobileNetV2 [19] � 61.4 24 (Pixel 3) 

Flow-guided [41] MobileNetV1 [60] � � 61.2 13 (Mate 8) 

TSSD(-OTA) [43] VGG-16 [32] � � 65.4 21 (Titan X) 

VOD-MT [44] VGG-16 [32] � � � 71.0 18 (N/A) 

TFEN ( m = 4 ) MobileNetV2 [19] � � � 68.9 29 (2080 Ti) 

TFEN ( m = 6 ) MobileNetV2 [19] � � � 69.2 28 (2080 Ti) 

TFEN ( m = 4 ) w/ SSD VGG-16 [32] � � � 70.6 25 (2080 Ti) 
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ot in accuracy. TSSD also runs in real-time, but its performance is 

ar worse than TFEN. 

Fig. 8 shows precision-recall curve comparison. As with TFEN, 

aster R-CNN and EB have a common point as a two-stage detec- 

or; however, we see that TFEN draws a better curve. We also ob- 

erve that TFEN keeps high-level precision, even though the recall 

ecomes higher. 

.4.2. Comparison on ImageNet VID 

Table 4 shows the performance comparison with other object 

etection methods for live-streaming videos on ImageNet VID. We 

resent models of TFEN ( m = 4 , 6 ) trained using FP32. TFEN( m = 6 )

as trained with half of the batch size for memory allocation 

2 In 

erms of accuracy, D&T, which employs the tracking operation, sur- 

asses all methods; however, it cannot run in real-time because of 

he high cost of simultaneous detection and tracking and the heavy 

ackbone. Some methods using ResNet-101 [22] or VGG [32] as the 

ackbone achieve higher mAP, but using such heavy backbones is 

ot suitable in the context of real-time object detection in live- 

treaming video. 

We see that methods exploiting MobileNetV1 [60] or Mo- 

ileNetV2 [19] as the backbone realize real-time object detection 
2 We confirm that when using FP32, the performances in accuracy and run-time 

peed at m = 4 and m = 6 are almost same like the case where we use FP16. 

t

E

t

7 
hanks to the lightness of the backbone; however, they tend to 

chieve lower mAP compared to methods having richer feature ex- 

ractors. In contrast, TFEN achieves the highest accuracy among the 

ethods using MobileNet (either V1 or V2), beating the second 

lace by about 7 points. This is because TFEN exploits feature ag- 

regation, attention mechanism, and recurrent neural networks al- 

ogether, and, furthermore, their combination brings the improve- 

ent of accuracy. 

We see that although VOD-MT [44] outperforms TFEN, its back- 

one is heavier than that of TFEN. As a result, VOD-MT runs at 

nly 18 fps while TFEN does at 29 fps. To fairly compare TFEN with 

OD-MT, we used VGG-16 [32] as the backbone and SSD as the 

etector for TFEN, resulting in the difference from VOD-MT is the 

nly feature aggregation module (the last line in Table 4 ). We see 

hat TFEN processes more than 7 fps faster than VOD-MT under 

he same backbone and detector while achieving comparable accu- 

acy 3 . This faster processing time comes from the one-shot manner 

ggregation of TFEN. We also see that a lightweight feature extrac- 

or, MobileNetV2, speeds up the processing time even more. We 

onfirm that TFEN is more suitable for applications where run-time 

peed is essential. 
3 Since VOD-MT [44] does not provide device information, we instead evaluated 

he runtime of VOD-MT � with 2080 Ti under fair conditions, resulting in 14 fps. 

ven if we use only the spatio-temporal feature aggregation module of VOD-MT � , 

he runtime is 22 fps. 
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Fig. 8. Comparison of precision-recall curves on each subset of UA-DETRAC test set. We show results by the default models provided by the dataset providers [17] and 

results by SpotNet, TSSD, and VOD-MT. 
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.5. Qualitative comparison 

Figure 9 shows detection results obtained by TFEN, the base- 

ine model (MobileNetV2 based Cascade R-CNN), and TSSD along 

 sequence of frames on UA-DETRAC dataset. It also shows ground 

ruth. The video clip shows that both TFEN and TSSD successfully 

etect the occluded car behind the bus while the baseline model 

ails. This confirms the importance of using temporal information 

ecause the baseline model does not use temporal information at 

ll. 

Figure 10 illustrates some visualized examples of the detection 

esult by the baseline and TFEN. First, we can see that the baseline 

odel is not stable in detection, as it sometimes incorrectly labels 

he target with another class or outputs multiple bounding boxes 

ven when the target is not moving much. On the other hand, the 
t

8 
etection results by TFEN are more stable, and the confidence level 

ends to be higher. This is thanks to incorporating time-series in- 

ormation in TFEN. 

.6. Ablation study 

We evaluated the effectiveness of each component in TFEN to 

how its necessity on both datasets. We removed each component 

f TFEN one by one from the complete model to have ablation 

odels. They are the model w/o TAD (temporal attention decoder), 

odel w/o SK (skip connection), model w/o SA (spatial attention), 

nd model w/o TF (temporally-aware feature maps). Note that the 

aseline model corresponds to the model dropping TFEN. Perfor- 

ances of the ablation models and the baseline model are illus- 

rated in Table 5 . 
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Fig. 9. Example detection results of TFEN, Baseline Model, and TSSD on UA-DETRAC dataset. 

Table 5 

Performance [%] of ablation models. 

Method 

Components UA-DETRAC Imagenet VID 

Video 

Temporal 

Attention Decoder 

Skip 

Connection 

Spatial 

Attention 

Temporally-aware 

Feature maps Overall Easy Medium Hard mAP 

(a) baseline model – – – – – 73.39 90.92 79.28 60.33 64.1 

(b) model w/o TAD � – � � � 79.26 95.96 85.83 67.42 67.8 

(c) model w/o SK � � – � � 72.53 91.26 78.57 59.24 64.3 

(d) model w/o SA � � � – � 80.93 97.17 86.08 66.44 68.5 

(e) model w/o TF � � � � – 79.22 95.06 84.77 65.46 67.7 

(f) (complete) TFEN � � � � � 82.42 97.40 88.90 72.18 68.9 
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.6.1. Temporal attention decoder 

The model w/o TAD ( Table 5 (b)) shows the ablation results 

f replacing the temporal attention decoder with a standard de- 

oder without an attention mechanism. This replacing decoder 

onsists of a simple stacked ConvGRU and ReLU, which receives 

nly current-frame feature maps and has no external memories; 

he model w/o TAD thus cannot exploit past feature maps except 

he hidden state. The performance of the model w/o TAD drops 

.16 points of AP and 1.3 points of mAP for the overall subset and

AP, respectively. This demonstrates the effectiveness of the tem- 

oral attention decoder. 

.6.2. Skip connection 

Table 5 (c) and (f) show that applying skip connection be- 

ween the feature extractor and the object detector brings con- 

istent gains on all the sets. Moreover, Table 5 (a) and (c) reveal 

hat the model w/o SK has lower scores than the baseline model 

n overall, medium, and hard subsets on the UA-DETRAC dataset. 

n the ImageNet VID dataset, the model w/o SK slightly outper- 

orms the baseline model but achieves the lowest score among all 

he ablation models. We conjecture that the skip connection helps 

radient flowing through TFEN and is an essential part of TFEN. 

.6.3. Spatial attention 

Table 5 (d) and (f) show that the spatial attention mechanism 

sed in the spatiotemporal encoder brings additional improve- 

ents 1.49%, 0.23%, 2.82%, 5.74% in AP on overall, easy, medium, 

ard subsets, respectively. We also see 0.4 point improvements on 
9 
mageNet VID. This suggests that the spatial attention mechanism 

s useful for all the subsets, but especially for the hard subset. 

e confirm that the hard subset tends to contain dense vehicles 

r small vehicles. Therefore, we may conclude that the spatial at- 

ention mechanism removes useless features around objects and 

akes feature maps easier to handle in the temporal attention de- 

oder. 

.6.4. Temporally-aware feature maps 

To verify the necessity of temporally-aware feature maps, we 

tore the feature maps without temporal information in the exter- 

al memory instead of the temporally-aware feature maps, which 

s the model of w/o TF. We remark that the model w/o TF uses 

he encoder only to create attention weights. Table 5 (e) and (f) 

how that temporal information in the external memory gives ad- 

itional improvements 3.20%, 2.34%, 4.13%, 6.72%, 1.2% on over- 

ll, easy, medium, hard subsets, and ImageNet VID, respectively. 

his suggests that the temporal information stored in the exter- 

al memory is useful for all the sets. We thus confirm that both 

he feature aggregation with temporal attention mechanism and 

emporal-aware feature maps are necessary for improving the de- 

ection accuracy. 

.6.5. Attention based feature aggregation 

We validated our introduced attention mechanism in feature 

ggregation by replacing it with other aggregation ways on the UA- 

ETRAC dataset. Table 6 shows the results. Our proposed attention 

echanism for feature aggregation, which is dynamic weighting, is 
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Fig. 10. Example detection results of TFEN and Baseline on ImageNet VID dataset where our model outperforms the baseline model. The upper row of each sequence 

corresponds to the baseline model, and the lower one corresponds to the proposal model, TFEN. A bounding box is plotted if its confidence score is larger than 0.4. 

Table 6 

Effectiveness of temporal attention mechanism 

on UA-DETRAC dataset. 

Feature aggregation ways AP[%] FPS 

Attention (ours) 82.42 29.11 

Weighted averaging 79.81 31.32 

Cos similarity 81.04 27.85 
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enoted by attention. Weighted averaging [15] is a static weight- 

ng way for feature aggregation where the weights of frames are 

etermined so that the previous and current frames are weighted 

:3, and all other frames are set to 1. Cos-similarity [9] is another 

ynamic weighting way where the weights of the current and past 

rames are dynamically computed using cosine similarity and the 

oftmax function. 
10 
We see from Table 6 that the dynamic weighting ways are more 

ccurate than the static weighting as the weights are changed for 

ach video and that our introduced attention is most beneficial. 

e also observe that attention is superior in terms of run-time. 

his is because it predicts the weights in a one-shot manner, not 

alculating weights one by one. 

.6.6. Feature maps enhancement 

We finally visualize the feature maps before and after TFEN 

 F t and 

ˆ F t ) in Fig. 11 to illustrate how feature maps are enriched.

ellow means higher activation values, whereas dark Mazarin in- 

icates negligible feature activation. We observe that compared 

ith F t , ˆ F t shows stronger responses near regions where vehicles 

xist, even highly occluded vehicles. We thus see that our fea- 

ure maps enhancement is practical and improves the detection 

ccuracy. 
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Fig. 11. Feature activation before and after TFEN. For visualization, we summed up the feature maps in the channel direction, then mapped their values to the interval of 

0–255, and up-sampled the feature channel by the bi-linear interpolation. 
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. Conclusion 

We presented the temporal attention network with the exter- 

al memory called TFEN for real-time object detection in live- 

treaming video. TFEN exploits the spatial and temporal informa- 

ion available to enrich feature maps extracted using a lightweight 

eature extractor. While the memory-based approach has been 

sed only for offline video object detectors, TFEN deals with frames 

n the memory with an efficient attention mechanism to real- 

ze online object detection in live-streaming videos. Compared 

ith attention-based methods that aggregate relevant frames to 

ocus on frame by frame, TFEN utilizes temporally-aware feature 

aps to efficiently compute attention weights in a one-shot man- 

er, which leads to real-time object detection. We confirmed that 

FEN achieves real-time performance while keeping comparable 

ccuracy with state-of-the-art methods using publicly available 

atasets. TFEN demonstrates the attention module’s clear benefits 

ased on the external memory and achieves a considerably en- 

anced trade-off between accuracy and speed. 

Our method computes attention weights for aggregation 

hrough the features of the current frame and demonstrates rea- 

onable performance in accuracy and speed. However, there will 

e other ways to compute the weights. Exploring further efficient 

nd effective aggregation weights is left for future work. 
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